Citation: Wang Yinghui, Wei Simin, Wang Kang, Xu Rongrong, Zhao Hongmei. A Theoretical Study of 8-Azaguanine Radical Cation Deprotonation[J]. Acta Chimica Sinica, ;2020, 78(3): 271-278. doi: 10.6023/A19120435 shu

A Theoretical Study of 8-Azaguanine Radical Cation Deprotonation

  • Corresponding author: Wei Simin, weisimin@iccas.ac.cn Zhao Hongmei, hmzhao@iccas.ac.cn
  • These authors contributed equally to this work
  • Received Date: 18 December 2019
    Available Online: 9 February 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21705029) and the Shaanxi Provincial Association for Science and Technology Young Talents Lifting Plan (No. 20190307)the National Natural Science Foundation of China 21705029the Shaanxi Provincial Association for Science and Technology Young Talents Lifting Plan 20190307

Figures(7)

  • Due to the lower redox potential comparing with guanine, it is the 8-azaguanine (8-AG) as the hole trap to form 8-azaguanine radical cation (8-AG·+) after one-electron oxidation of DNA containing 8-azaguanine. In generally, the 8-AG·+ may suffer from deprotonation to generate 8-AG(-H)·. In this text, we were stimulated to investigate the deprotonation reaction of 8-AG·+ generating by one-electron oxidation at M06-2X/6-31+G(d) level with explicit water molecules and polarized continuum model (PCM) to simulate the solvent effect. By building deprotonation model with different number of explicit water molecules, we found that these four water molecules locating around N(1)-H, O(6), N(2)-H of 8-AG·+ as well as the one locating in the second water shell which was hydrogen-bonding with the water around O(6) were necessary. If the water in the second water shell was not included, the imino proton (N(1)-H) would not transfer into the bulk water. In parallel, the N(1)-H would transfer to the O(6) of 8-AG·+ by intramolecular proton transfer. If the water molecule locating around N(2)-H was removed, the 8-AG·+ deprotonation would continue but the energy barrier would be lowered from 24.8 kJ/mol to 16.3 kJ/mol. In addition, the site of the water molecule in the second water shell was also studied. If putting the water in the second water shell around N(2)-H of 8-AG·+, the proton would be stabilized between the N(1) of 8-AG·+ and the oxygen of water molecule around N(1)-H meaning the proton would not be transferred into bulk water. Further, in order to test the influence of water number on 8-AG·+ deprotonation, the fifth water molecule, which is hydrogen-bonding with the water molecule around N(2)-H and another N(2)-H, was added. The potential energy surface with 5H2O revealed that it is almost no effect on the deprotonation pathway and energy barrier (25.5 kJ/mol). Lastly, so as to obtain the exact energy barrier of 8-AG·+ deprotonation, the deprotonation model with more explicit water molecules (9H2O) was proposed, where the additional water molecules were placed around N(2)-H, N(3), O(6), N(7) and N(8). From the potential energy surface, the deprotonation energy barrier of 8-AG·+ was confirmed to be 19.5 kJ/mol. These theoretical results provide valuable dynamics information and mechanistic insights for further understanding the properties of nucleic acid base analogues and one-electron oxidation of DNA.
  • 加载中
    1. [1]

      Seth, P. P.; Tanowitz, M.; Bennett, C. F. J. Clin. Invest. 2019, 129, 915.  doi: 10.1172/JCI125228

    2. [2]

      Zou, X.; Zhao, H.; Yu, Y.; Su, H. J. Am. Chem. Soc. 2013, 135, 4509.  doi: 10.1021/ja400483j

    3. [3]

      Zou, X.; Dai, X.; Liu, K.; Zhao, H.; Song, D.; Su, H. J. Phys. Chem. B 2014, 118, 5864.  doi: 10.1021/jp501658a

    4. [4]

      Jie, J.; Xia, Y.; Huang, C.-H.; Zhao, H.; Yang, C.; Liu, K.; Song, D.; Zhu, B.-Z.; Su, H. Nucleic Acids Res. 2019, 47, 11514.

    5. [5]

      Kim, N.; Choi, J. W.; Song, A. Y.; Choi, W. S.; Park, H. R.; Park, S.; Kim, I.; Kim, H. S. Int. Immunopharmacol. 2019, 67, 152.  doi: 10.1016/j.intimp.2018.12.020

    6. [6]

      Kawada, M.; Amemiya, M.; Sakamoto, S.; Ohishi, T.; Yoshida, J.; Tatsuda, D. Cancer Sci. 2018, 109, 157.

    7. [7]

      Folkes, L. K.; O'Neill, P. Free Radical Biol. Med. 2013, 58, 14.  doi: 10.1016/j.freeradbiomed.2013.01.014

    8. [8]

      de Araujo, A. V. S.; Borin, A. C. J. Phys. Chem. A 2019, 123, 3109.  doi: 10.1021/acs.jpca.9b01397

    9. [9]

      Zhou, Z. N.; Hu, Z. B.; Zhang, X. W.; Jia, M. H.; Wang, X. L.; Su, H. M.; Sun, H. T.; Chen, J. Q.; Xu, J. H. ChemPhysChem 2019, 20, 757.  doi: 10.1002/cphc.201800969

    10. [10]

      Wierzchowski, J.; Medza, G.; Szabelski, M.; Stachelska- Wierzchowska, A. J. Photochem. Photobiol. A-Chem. 2013, 265, 49.  doi: 10.1016/j.jphotochem.2013.05.014

    11. [11]

      Kawai, K.; Majima, T. Acc. Chem. Res. 2013, 46, 2616.  doi: 10.1021/ar400079s

    12. [12]

      Cadet, J.; Wagner, J. R.; Shafirovich, V.; Geacintov, N. E. Int. J. Radiat Biol. 2014, 90, 423.  doi: 10.3109/09553002.2013.877176

    13. [13]

      Wang, Y.; Zhao, H.; Yang, C.; Jie, J.; Dai, X.; Zhou, Q.; Liu, K.; Song, D.; Su, H. J. Am. Chem. Soc. 2019, 141, 1970.  doi: 10.1021/jacs.8b10743

    14. [14]

      Takada, T.; Kawai, K.; Fujitsuka, M.; Majima, T. Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 14002.  doi: 10.1073/pnas.0402756101

    15. [15]

      Wu, L. D.; Jie, J. L.; Liu, K. H.; Su, H. M. Acta Chim. Sinica 2014, 72, 1182 (in Chinese).
       

    16. [16]

      Yang, W. Y.; Lei, Z. C.; Hong, W. J.; Huang, F. Z. Acta Chim. Sinica 2019, 77, 951 (in Chinese).
       

    17. [17]

      Kobayashi, K.; Tagawa, S. J. Am. Chem. Soc. 2003, 125, 10213.  doi: 10.1021/ja036211w

    18. [18]

      Wu, L. D.; Liu, K. H.; Jie, J. L.; Song, D.; Su, H. M. J. Am. Chem. Soc. 2015, 137, 259.  doi: 10.1021/ja510285t

    19. [19]

      Wang, Y.; Zhao, H.; Zhou, Q.; Dai, X.; Liu, K.; Song, D.; Su, H. J. Phys. Chem. B 2019, 123, 2853.

    20. [20]

      Rokhlenko, Y.; Cadet, J.; Geacintov, N. E.; Shafirovich, V. J. Am. Chem. Soc. 2014, 136, 5956.  doi: 10.1021/ja412471u

    21. [21]

      Rokhlenko, Y.; Geacintov, N. E.; Shafirovich, V. J. Am. Chem. Soc. 2012, 134, 4955.  doi: 10.1021/ja212186w

    22. [22]

      Zhang, Q. H.; Wang, Y.; Liu, C.; Yang, Z. Z. Acta Chim. Sinica 2014, 72, 956 (in Chinese).
       

    23. [23]

      Lonkar, P.; Dedon, P. C. Int. J. Cancer 2011, 128, 1999.  doi: 10.1002/ijc.25815

    24. [24]

      Wu, Y. J.; Zhai, S. G.; Lu, K.; Gao, L. J. Solid State Electrochem. 2014, 18, 1593.  doi: 10.1007/s10008-014-2393-3

    25. [25]

      Li, X.; Cai, Z.; Sevilla, M. D. J. Phys. Chem. B 2001, 105, 10115.  doi: 10.1021/jp012364z

    26. [26]

      Kumar, A.; Sevilla, M. D. J. Phys. Chem. B 2009, 113, 11359.  doi: 10.1021/jp903403d

    27. [27]

      Wang, Y. H.; Jie, J. L.; Zhao, H. M.; Bai, Y.; Qin, P. X.; Song, D. Acta Chim. Sinica 2018, 76, 475 (in Chinese).  doi: 10.11862/CJIC.2018.063
       

    28. [28]

      Zhao, Y.; Truhlar, D. G. Theor. Chem. Acc. 2008, 120, 215.  doi: 10.1007/s00214-007-0310-x

    29. [29]

      Wei, S. M.; Wang, Y. H.; Zhao, H. M. Acta Chim. Sinica 2019, 77, 278 (in Chinese).
       

    30. [30]

      Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2008, 112, 1095.  doi: 10.1021/jp7109127

    31. [31]

      Galano, A.; Alvarez-Idaboy, J. R. Phys. Chem. Chem. Phys. 2012, 14, 12476.  doi: 10.1039/c2cp40799j

    32. [32]

      Candeias, L. P.; Steenken, S. J. Am. Chem. Soc. 1989, 111, 1094.  doi: 10.1021/ja00185a046

    33. [33]

      Berkelbach, T. C.; Lee, H. S.; Tuckerman, M. E. Phys. Rev. Lett. 2009, 103, 238302  doi: 10.1103/PhysRevLett.103.238302

    34. [34]

      Marx, D.; Tuckerman, M. E.; Hutter, J.; Parrinello, M. Nature 1999, 397, 601.  doi: 10.1038/17579

    35. [35]

      Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Ha-segawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 09, Revision A. 01, Gaussian, Inc., Wallingford, CT, 2009.

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    8. [8]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    12. [12]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    13. [13]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Zhi WangLingpeng YanYelin HaoJingxia ZhengYongzhen YangXuguang Liu . Highly efficient and photothermally stable CDs@ZIF-8 for laser illumination. Chinese Chemical Letters, 2024, 35(10): 109430-. doi: 10.1016/j.cclet.2023.109430

Metrics
  • PDF Downloads(12)
  • Abstract views(2173)
  • HTML views(287)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return