Citation: Zhai Yali, Xu Wenjuan, Meng Xiangru, Hou Hongwei. Adjusting the Third-Order Nonlinear Optical Switch Performance Based on Azobenzene Derivatives[J]. Acta Chimica Sinica, ;2020, 78(3): 256-262. doi: 10.6023/A19120427 shu

Adjusting the Third-Order Nonlinear Optical Switch Performance Based on Azobenzene Derivatives

  • Corresponding author: Meng Xiangru, mxr@zzu.edu.cn Hou Hongwei, houhongw@zzu.edu.cn
  • Received Date: 16 December 2019
    Available Online: 5 March 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21671174), the Zhongyuan Thousand Talents Project and the Natural Science Foundation of Henan Province (No. 182300410008)the National Natural Science Foundation of China 21671174the Zhongyuan Thousand Talents Project and the Natural Science Foundation of Henan Province 182300410008

Figures(7)

  • The photo-controllable third-order nonlinear optical (NLO) switches have drawn ever-increasing attention due to considerable research potential in the emerging field of nonlinear optics. A class of materials, which contain photosensitive groups but cannot express directly switching properties under light conditions, can also exhibit the characteristics of excellent photo-controllable NLO switches after external regulation. Azobenzene is a kind of classic photo-isomerized molecule and has good π coplanar property and excellent electron channel, which can engender third-order NLO response under push and pull electron action. It is a feasible strategy to design photo-controlled NLO switch materials by introducing azo groups. Nevertheless, the trans-cis isomerization behaviors of some azobenzene derivatives are interfered by other groups or external factors, further inhibiting the conversion of photo-controllable third-order NLO properties. Once these external interference factors are found and removed, the photo-controllable NLO behaviors of such azobenzene derivatives will be opened. In our work, a special azobenzene derivative was synthesized and reported, which was unable to produce cis-trans isomerization due to the H+ effect of self-dissociation, and the H+ effect could be shield by introducing organic groups or bases. The adjusted materials can easily undergo reversible cis-trans isomerization reaction, and the Z-scan test shows the complete inversions of third-order NLO properties before and after UV irradiation. The adjusted materials in trans configuration show the reverse saturation absorption (RSA) and self-defocusing properties. After UV irradiation, the materials convert into cis configuration and exhibit saturation absorption (SA) and strong self-focusing behaviors. To gain a deeper understanding of the light-adjusted third-order NLO switch behaviors, density functional theory (DFT) calculations of (CH3)2L were carried out. For trans-(CH3)2L, HOMO and LUMO are mainly localized on the azobenzene unit, where π-π* transition between the two orbitals is displayed. The azobenzene unit in the trans-(CH3)2L is considered to have considerable contribution to the generation of third-order nonlinear-ity. For cis-(CH3)2L, the electron cloud density of HOMO is mainly populated on the azobenzene unit, whereas the electron cloud density distribution of LUMO appears on the entire molecule, suggesting significant intramolecular charge transfer (ICT) from azobenzene to the entire molecule. The effect of ICT in the cis structure dominants the generation of third-order nonlinearity. The remarkable third-order NLO transformation result from the rearrangement of the electronic structures, which makes them generate different response mechanisms under the laser stimulation.
  • 加载中
    1. [1]

      Delaire, A. J.; Nakatani, K. Chem. Rev. 2000, 100, 1817.  doi: 10.1021/cr980078m

    2. [2]

      Green, K. A.; Cifuentes, M. P.; Corkery, T. C.; Samoc, M.; Humphrey, M. G. Angew. Chem., Int. Ed. 2009, 48, 7867.  doi: 10.1002/anie.200903027

    3. [3]

      Castet, F.; Rodriguez, V.; Pozzo, J. L.; Ducasse, L.; Plaquet, A.; Champagne, B. Acc. Chem. Res. 2013, 46, 2656.  doi: 10.1021/ar4000955

    4. [4]

      Xu, W. J.; Shao, Z. C.; Han. Y. B.; Wang, W.; Song, Y. L.; Hou, H. W. Dyes Pigm. 2018, 152, 171.  doi: 10.1016/j.dyepig.2018.01.056

    5. [5]

      Green, K. A.; Cifuentes, M. P.; Samoc, M.; Humphrey, M. G. Coord. Chem. Rev. 2011, 255, 2530.  doi: 10.1016/j.ccr.2011.02.021

    6. [6]

      Champagne, B.; Plaquet, A.; Pozzo, J. L.; Rodriguez, V.; Castet, F. J. Am. Chem. Soc. 2012, 134, 8101.  doi: 10.1021/ja302395f

    7. [7]

      Feng, Q.; Li, Y. Y.; Shi, G.; Wang, L. L.; Zhang, W. J.; Li, K.; Hou, H. W.; Song, Y. L. J. Mater. Chem. C 2016, 4, 8552.  doi: 10.1039/C6TC01549B

    8. [8]

      Beaujean, P.; Bondu, F.; Plaquet, A.; Garcia-Amorós, J.; Cusido, J.; Raymo, F. M.; Castet, F.; Rodriguez, V.; Champagne, B. J. Am. Chem. Soc. 2016, 138, 5052.  doi: 10.1021/jacs.5b13243

    9. [9]

      Boixel, J.; Guerchais, V.; Bozec, H. L.; Chantzis, A.; Jacquemin, D.; Colombo, A.; Dragonetti, C.; Marinotto, D.; Roberto, D. Chem. Commun. 2015, 51, 7805.  doi: 10.1039/C5CC01893E

    10. [10]

      Dhammika Bandara, H. M.; Burdette, S. C. Chem. Soc. Rev. 2012, 41, 1809.  doi: 10.1039/C1CS15179G

    11. [11]

      Chu, Z.; Han, Y.; Bian, T.; De, S.; Král, P.; Klajn, R. J. Am. Chem. Soc. 2019, 141, 1949.  doi: 10.1021/jacs.8b09638

    12. [12]

      Natali, M.; Giordani, S. Chem. Soc. Rev. 2012, 41, 4010.  doi: 10.1039/c2cs35015g

    13. [13]

      Zakrevskyy, Y.; Richter, M.; Zakrevska, S.; Lomadze, N.; von Klitzing, R. Adv. Funct. Mater. 2012, 22, 5000.  doi: 10.1002/adfm.201200617

    14. [14]

      Chen, L.; Tang, X.; Jia, K.; Tang, X. Z. Chin. J. Org. Chem. 2016, 36, 2197.

    15. [15]

      Xu, W. J.; Wang, W.; Li, J. X.; Wu, Q.; Zhao, Y. J.; Hou, H. W.; Song, Y. L. Dyes Pigm. 2019, 160, 1  doi: 10.1016/j.dyepig.2018.07.046

    16. [16]

      Chen, L.; Bo, S. H.; He, Y. L.; Chen, Z.; Liu, X. H.; Zhen, Z. Chin. J. Org. Chem. 2017, 37, 2263.

    17. [17]

      Qu, M.; Liu, M. M.; Liu, J.; Zhang, X. M. Chin. J. Chem. 2014, 32, 1259.  doi: 10.1002/cjoc.201400424

    18. [18]

      Xie, Q.; Shao, Z. C.; Zhao, Y. J.; Yang, L. P.; Wu, Q.; Xu, W. J.; Li, K.; Song, Y. L.; Hou, H. W. Dyes Pigm. 2019, 170, 107599.  doi: 10.1016/j.dyepig.2019.107599

    19. [19]

      Li, Q. Y.; Chi, Z.; Li, T. F.; Ran, X.; Guo, L. J. Opt. Express 2017, 25, 11503.  doi: 10.1364/OE.25.011503

    20. [20]

      Liaros, N.; Couris, S.; Maggini, L.; Leo, F. D.; Cattaruzza, F.; Aurisicchio, C.; Bonifazi, D. ChemPhysChem 2013, 14, 2961.  doi: 10.1002/cphc.201300420

    21. [21]

      Szymański, W.; Beierle, J. M.; Kistemaker, H. A. V.; Velema, W. A.; Feringa, B. L. Chem. Rev. 2013, 113, 6114.  doi: 10.1021/cr300179f

    22. [22]

      Xue, X. N.; Wang, H. R.; Han, Y. B.; Hou, H. W. Dalton Trans 2018, 47, 13.  doi: 10.1039/C7DT03989A

    23. [23]

      Lovrien, R.; Pesheck, P.; Tisel, W. J. Am. Chem. Soc. 1974, 96, 244.  doi: 10.1021/ja00808a039

    24. [24]

      Klotz, I. M.; Fiess, H. A.; Chen Ho, J. Y.; Mellody, M. J. Am. Chem. Soc. 1954, 76, 5136.  doi: 10.1021/ja01649a041

    25. [25]

      Nihei, M.; Kurihara, M.; Mizutani, J.; Nishihara, H. J. Am. Chem. Soc. 2003, 125, 2964.  doi: 10.1021/ja028080p

    26. [26]

      Beharry, A. A.; Woolley, G. A. Chem. Soc. Rev. 2011, 40, 4422.  doi: 10.1039/c1cs15023e

    27. [27]

      Wu, Z.; Xue, R.; Xie, M.; Wang, X.; Liu, Z.; Drechsler, M.; Huang, J.; Yan, Y. J. Phys. Chem. Lett. 2018, 9, 163.  doi: 10.1021/acs.jpclett.7b03060

    28. [28]

      Joshi, N. K.; Fuyuki, M.; Wada, A. J. Phys. Chem. B 2014, 118, 1891.  doi: 10.1021/jp4125205

    29. [29]

      Wettermark, G.; Langmuir, M. E.; Anderson, D. G. J. Am. Chem. Soc. 1965, 87, 476.  doi: 10.1021/ja01081a014

    30. [30]

      Beharry, A. A.; Sadovski, O.; Woolley, G. A. J. Am. Chem. Soc. 2011, 133, 19684.  doi: 10.1021/ja209239m

    31. [31]

      Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G. K.; Berger, R.; Butt, H. J.; Wu, S. Nat. Chem. 2017, 9, 145.  doi: 10.1038/nchem.2625

    32. [32]

      Zhang, W.; He, C. Y.; Xiao, X. W.; Song W. N.; Gao, Y. C.; Chen, Z. M.; Dong, Y. L.; Wu, Y. Q.; Wang, Q. Chin. J. Chem. 2016, 34, 1006.  doi: 10.1002/cjoc.201600406

    33. [33]

      Liang, P. X.; Mi, Y. S.; Duan, J. S.; Yang, Z.; Wang, D.; Cao, H.; He, W. L.; Yang, H. Chin. J. Chem. 2016, 34, 381.  doi: 10.1002/cjoc.201500144

    34. [34]

      Niu, R. J.; Zhou, W. F.; Liu, Y.; Yang, J. Y.; Zhang, W. H.; Lang, J. P.; Young, D. J. Chem. Commun. 2019, 55, 4873.  doi: 10.1039/C9CC01363F

    35. [35]

      Zhang, C.; Song, Y. L.; Wang, X. Coord. Chem. Rev. 2007, 251, 111.  doi: 10.1016/j.ccr.2006.06.007

    36. [36]

      Chen, Q. F.; Zhao, X.; Liu, Q.; Jia, J. D.; Qiu, X. T.; Song, Y. L.; Young, D. J.; Zhang, W. H.; Lang, J. P. Inorg. Chem. 2017, 56, 5669.  doi: 10.1021/acs.inorgchem.7b00261

    37. [37]

      Zhao, Y. J.; Li, H. H.; Shao, Z. C.; Xu, W. J.; Meng, X. R.; Song, Y. L.; Hou, H. W. Inorg. Chem. 2019, 58, 4792.  doi: 10.1021/acs.inorgchem.8b03154

    38. [38]

      Li, J. L.; Ding, G. H.; Niu, Y. Y.; Wu, L. Y.; Duan, H. Y.; Feng, F. J.; He, W. J. Chin. J. Org. Chem. 2018, 38, 931.  doi: 10.6023/cjoc201709001

    39. [39]

      Wu, X. Z.; Xiao, J. C.; Sun, R.; Jin, T. X.; Yang, J. Y.; Shi, G.; Wang, Y. X.; Zhang, X. R.; Song, Y. L. Adv. Opt. Mater. 2017, 5, 1600712.  doi: 10.1002/adom.201600712

    40. [40]

      Hou, H. W.; Wei, Y. L.; Song, Y. L.; Mi, L. W.; Tang, M. S.; Li, L. K.; Fan, Y. T. Angew. Chem., Int. Ed. 2005, 44, 6067.  doi: 10.1002/anie.200463004

    41. [41]

      Liang, P. X.; Li, Z. Q.; Mi, Y. S.; Yang, Z.; Wang, D.; Cao, H.; He, W. L.; Yang, H. J. Electron. Mater. 2015, 44, 2883.  doi: 10.1007/s11664-015-3736-2

    42. [42]

      Xiao, Z. G.; Shi, Y. F.; Sun, R.; Ge, J. F.; Li, Z. G.; Fang, Y.; Wu, X. Z.; Yang, J. Y.; Zhao, M. G.; Song, Y. L. J. Mater. Chem. C 2016, 4, 4647.  doi: 10.1039/C5TC04047G

    43. [43]

      Kanoo, P.; Matsuda, R.; Sato, H.; Li, L.; Jeon, H. J.; Kitagawa, S. Inorg. Chem. 2013, 52, 10735.  doi: 10.1021/ic401924d

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    16. [16]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    17. [17]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    18. [18]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    19. [19]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    20. [20]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

Metrics
  • PDF Downloads(14)
  • Abstract views(2204)
  • HTML views(387)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return