Citation: Liu Jianguo, Zhang Mingyue, Wang Nan, Wang Chenguang, Ma Longlong. Research Progress of Covalent Organic Framework Materials in Catalysis[J]. Acta Chimica Sinica, ;2020, 78(4): 311-325. doi: 10.6023/A19120426 shu

Research Progress of Covalent Organic Framework Materials in Catalysis

  • Corresponding author: Liu Jianguo, liujg@ms.giec.ac.cn Ma Longlong, mall@ms.giec.ac.cn
  • Received Date: 14 December 2019
    Available Online: 8 April 2020

    Fund Project: the National Natural Science Foundation of China 51976225Project supported by the National Natural Science Foundation of China (No. 51976225) and Dalian National Laboratory for Clean Energy Cooperation Fund, Chinese Academy of Sciences (No. DNL201916)Dalian National Laboratory for Clean Energy Cooperation Fund, Chinese Academy of Sciences DNL201916

Figures(20)

  • Covalent organic framework materials (COFs) are a class of organic porous materials with large specific surface area, high porosity and crystallinity. Owning to their special nature of functional versatility and easy modification, COFs can be designed to be efficient catalysts either embed functional active sites into the skeleton through a "top-down" strategy, or load metal nanoparticles into the framework via a post-modification approach. These studies have laid the foundation for the extension of COF's application in heterogeneous and other catalytic fields. The synthetic strategy and application of COF in different types of catalytic reactions are reviewed in this paper. Moreover, the current research situation of COF catalyst is summarized and prospected. Finally, the remaining challenges in this field are also indicated.
  • 加载中
    1. [1]

      Feng, X.; Ding, X.; Jiang, D. L. Chem. Soc. Rev. 2012, 41, 6010.  doi: 10.1039/c2cs35157a

    2. [2]

      Segura, J. L.; Mancheno, M. J.; Zamora, F. Chem. Soc. Rev. 2016, 45, 5635.  doi: 10.1039/C5CS00878F

    3. [3]

      Song, J. R.; Huang, Z. T.; Zheng, Q. Y. Chin. J. Chem. 2013, 31, 577.  doi: 10.1002/cjoc.201300138

    4. [4]

      Li, Z. P.; Feng, X.; Zou, Y. C.; Zhang, Y. W.; Xia, H.; Liu, X. M.; Mu, Y. Chem. Commun. 2014, 50, 13825.  doi: 10.1039/C4CC05665E

    5. [5]

      Huang, N.; Chen, X.; Krishna, R.; Jiang, D. L. Angew. Chem. Int. Ed. 2015, 54, 2986.  doi: 10.1002/anie.201411262

    6. [6]

      Zhao, Y. F.; Yao, K. X.; Teng, B. Y.; Zhang, T.; Han, Y. Energ. Environ. Sci. 2013, 6, 3684.  doi: 10.1039/c3ee42548g

    7. [7]

      Wang, P. Y.; Kang, M. M.; Sun, S. M.; Liu, Q.; Zhang, Z. H.; Fang, S. M. Chin. J. Chem. 2014, 32, 838.  doi: 10.1002/cjoc.201400260

    8. [8]

      Feng, X.; Liu, L.; Honsho, Y.; Saeki, A.; Seki, S.; Irle, S.; Dong, Y.; Nagai, A.; Jiang, D. L. Angew. Chem. Int. Ed. 2012, 51, 2618.  doi: 10.1002/anie.201106203

    9. [9]

      Wang, J. H.; Zhang, Y.; An, L. C.; Wang, W. H.; Zhang, Y. H.; Bu, X. H. Chin. J. Chem. 2018, 36, 826.  doi: 10.1002/cjoc.201800142

    10. [10]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339.
       

    11. [11]

      Peng, Z. K.; Ding, H. M.; Chen, R. F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681.
       

    12. [12]

      He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. X. Acta Chim. Sinica 2018, 76, 202.
       

    13. [13]

      Zhang, S. X; Shao, X. F. Acta Chim. Sinica 2018, 76, 531.  doi: 10.3866/PKU.WHXB201805231
       

    14. [14]

      Liu, X. G.; Huang, D. L.; Lai, C.; Zeng, G. M.; Qin, L.; Wang, H.; Yi, H.; Li, B. S.; Liu, S. Y.; Zhang, M. M.; Deng, R.; Fu, Y. K.; Li, L.; Xue, W. J.; Chen, S. Chem. Soc. Rev. 2019, 48, 5266.  doi: 10.1039/C9CS00299E

    15. [15]

      Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606.

    16. [16]

      Davankov, V.; Tsyurupa, M. React. Polym. 1990, 13, 27.  doi: 10.1016/0923-1137(90)90038-6

    17. [17]

      Rojas, A.; Arteaga, O.; Kahr, B.; Camblor, M. A. J. Am. Chem. Soc. 2013, 135, 11975.  doi: 10.1021/ja405088c

    18. [18]

      Zhang, Y. D.; Zhu, Y. L.; Guo, J.; Gu, S.; Wang, Y. Y.; Fu, Y.; Chen, D. Y.; Lin, Y. J.; Yu, G. P.; Pan, C. Y. Phys. Chem. Chem. Phys. 2016, 18, 11323.  doi: 10.1039/C6CP00981F

    19. [19]

      Xu, S. J.; Luo, Y. L.; Tan, B. E. Macromol. Rapid Commun. 2013, 34, 471.  doi: 10.1002/marc.201200788

    20. [20]

      Wood, C. D.; Tan, B.; Trewin, A.; Su, F.; Rosseinsky, M. J.; Bradshaw, D.; Sun, Y.; Zhou, L.; Cooper, A. I. Adv. Mater. 2008, 20, 1916.  doi: 10.1002/adma.200702397

    21. [21]

      McKeown, N. B.; Budd, P. M. Chem. Soc. Rev. 2006, 35, 675.  doi: 10.1039/b600349d

    22. [22]

      Kaushik, M.; Basu, K.; Benoit, C.; Cirtiu, C. M.; Vali, H.; Moores, A. J. Am. Chem. Soc. 2015, 137, 6124.  doi: 10.1021/jacs.5b02034

    23. [23]

      MacLean, M. W.; Reid, L. M.; Wu, X.; Crudden, C. M. Chem. Asian. J. 2015, 10, 70.  doi: 10.1002/asia.201402682

    24. [24]

      Jiang, J. X.; Trewin, A.; Adams, D. J.; Cooper, A. I. Chem. Sci. 2011, 2, 1777.  doi: 10.1039/c1sc00329a

    25. [25]

      Kuhn, P.; Antonietti, M.; Thomas, A. Angew. Chem. Int. Ed. 2008, 47, 3450.  doi: 10.1002/anie.200705710

    26. [26]

      Bojdys, M. J.; Jeromenok, J.; Thomas, A.; Antonietti, M. Adv. Mater. 2010, 22, 2202.  doi: 10.1002/adma.200903436

    27. [27]

      Ren, S.; Bojdys, M. J.; Dawson, R.; Laybourn, A.; Khimyak, Y. Z.; Adams, D. J.; Cooper, A. I. Adv. Mater. 2012, 24, 2357.  doi: 10.1002/adma.201200751

    28. [28]

      Ranganathan, A.; Heisen, B. C.; Dix, I.; Meyer, F. Chem. Commun. 2007, 3637.

    29. [29]

      Ben, T.; Ren, H.; Ma, S. Q.; Cao, D. P.; Lan, J. H.; Jing, X. F.; Wang, W. C.; Xu, J.; Deng, F.; Simmons, J. M. Angew. Chem. Int. Ed. 2009, 48, 9457.  doi: 10.1002/anie.200904637

    30. [30]

      Ben, T.; Qiu, S. L. CrystEngComm 2013, 15, 17.  doi: 10.1039/C2CE25409C

    31. [31]

      Ben, T.; Pei, C. Y.; Zhang, D. L.; Xu, J.; Deng, F.; Jing, X. F.; Qiu, S. L. Energy Environ. Sci. 2011, 4, 3991.  doi: 10.1039/c1ee01222c

    32. [32]

      Yu, J. H.; Xu, R. R. J. Mater. Chem. 2008, 18, 4021.  doi: 10.1039/b804136a

    33. [33]

      Morris, R. E.; Bu, X. Nat. Chem. 2010, 2, 353.  doi: 10.1038/nchem.628

    34. [34]

      Fu, X. B.; Yu, G. P. Prog. Chem. 2016, 28, 1006.

    35. [35]

      Hu, H.; Yan, Q. Q.; Ge, R. L.; Gao, Y. A. Chinese J. Catal. 2018, 39, 1167.

    36. [36]

      Li, Y. W.; Yang, R. T. AIChE J. 2008, 54, 269.  doi: 10.1002/aic.11362

    37. [37]

      Spitler, E. L.; Colson, J. W.; Uribe-Romo, F. J.; Woll, A. R.; Giovino, M. R.; Saldivar, A.; Dichtel, W. R. Angew. Chem. Int. Ed. 2012, 51, 2623.  doi: 10.1002/anie.201107070

    38. [38]

      Wang, T.; Xue, R.; Wei, Y. L.; Wang, M. Y.; Guo, H.; Yang, W. Prog. Chem. 2018, 30, 753.

    39. [39]

      Côté, A.; Benin, A.; Ockwig, N.; O'keeffe, M.; Matzger, A.; Yaghi, O. Chem. Mater. 2006, 18, 5296.  doi: 10.1021/cm061177g

    40. [40]

      Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. J. Am. Chem. Soc. 2011, 133, 19816.  doi: 10.1021/ja206846p

    41. [41]

      Ma, H. C.; Kan, J. L.; Chen, G. J.; Chen, C. X.; Dong, Y. B. Chem. Mater. 2017, 29, 6518.  doi: 10.1021/acs.chemmater.7b02131

    42. [42]

      Bhadra, M.; Sasmal, H. S.; Basu, A.; Midya, S. P.; Kandambeth, S.; Pachfule, P.; Balaraman, E.; Banerjee, R. ACS Appl. Mater. Interfaces 2017, 9, 13785.  doi: 10.1021/acsami.7b02355

    43. [43]

      Li, Y.; Chen, W. B.; Gao, R. D.; Zhao, Z. Q.; Zhang, T.; Xing, G. L.; Chen, L. Chem. Commun. 2019, 55, 14538.  doi: 10.1039/C9CC07500C

    44. [44]

      Han, X.; Xia, Q. C.; Huang, J. J.; Liu, Y.; Tan, C. X.; Cui, Y. J. Am. Chem. Soc. 2017, 139, 8693.  doi: 10.1021/jacs.7b04008

    45. [45]

      Lyu, H.; Diercks, C. S.; Zhu, C.; Yaghi, O. M. J. Am. Chem. Soc. 2019, 141, 6848.  doi: 10.1021/jacs.9b02848

    46. [46]

      Mullangi, D.; Chakraborty, D.; Pradeep, A.; Koshti, V.; Vinod, C. P.; Panja, S.; Nair, S.; Vaidhyanathan, R. Small 2018, 14, e1801233.  doi: 10.1002/smll.201801233

    47. [47]

      Mu, M. M.; Wang, Y. W.; Qin, Y. T.; Yan, X. L.; Li, Y.; Chen, L. G. ACS Appl. Mater. Interfaces 2017, 9, 22856.  doi: 10.1021/acsami.7b05870

    48. [48]

      Vardhan, H.; Verma, G.; Ramani, S.; Nafady, A.; Al-Enizi, A. M.; Pan, Y.; Yang, Z.; Yang, H.; Ma, S. ACS Appl. Mater. Interfaces 2019, 11, 3070.  doi: 10.1021/acsami.8b19352

    49. [49]

      Li, X.; Wang, Z. F.; Sun, J. X.; Gao, J.; Zhao, Y.; Cheng, P.; Aguila, B.; Ma, S. Q.; Chen, Y.; Zhang, Z. J. Chem. Commun. 2019, 55, 5423.  doi: 10.1039/C9CC01317B

    50. [50]

      Zhang, J.; Han, X.; Wu, X. W.; Liu, Y.; Cui, Y. ACS Sustainable Chem. Eng. 2019, 7, 5065.  doi: 10.1021/acssuschemeng.8b05887

    51. [51]

      Vardhan, H.; Hou, L.; Yee, E.; Nafady, A.; Al-Abdrabalnabi, M. A.; Al-Enizi, A. M.; Pan, Y.; Yang, Z.; Ma, S. ACS Sustainable Chem. Eng. 2019, 7, 4878.  doi: 10.1021/acssuschemeng.8b05373

    52. [52]

      Puthiaraj, P.; Pitchumani, K. Chemistry 2014, 20, 8761.  doi: 10.1002/chem.201402365

    53. [53]

      Dong, B.; Wang, L. Y.; Zhao, S.; Ge, R.; Song, X. D.; Wang, Y.; Gao, Y. N. Chem. Commun. 2016, 52, 7082.  doi: 10.1039/C6CC03058K

    54. [54]

      Lan, X. W.; Du, C.; Cao, L. L.; She, T. T.; Li, Y. M.; Bai, G. Y. ACS Appl. Mater. Interfaces 2018, 10, 38953.  doi: 10.1021/acsami.8b14743

    55. [55]

      Zhong, W. F.; Sa, R. J.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. J. Am. Chem. Soc. 2019, 141, 7615.  doi: 10.1021/jacs.9b02997

    56. [56]

      Bhadra, M.; Kandambeth, S.; Sahoo, M. K.; Addicoat, M.; Balaraman, E.; Banerjee, R. J. Am. Chem. Soc. 2019, 141, 6152.  doi: 10.1021/jacs.9b01891

    57. [57]

      Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Angew. Chem. Int. Ed. 2019, 58, 6430.  doi: 10.1002/anie.201902543

    58. [58]

      Huang, W.; Li, Y. G. Chin. J. Chem. 2019, 37, 1291.  doi: 10.1002/cjoc.201900375

    59. [59]

      Banerjee, T.; Haase, F.; Savasci, G.; Gottschling, K.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2017, 139, 16228.  doi: 10.1021/jacs.7b07489

    60. [60]

      Vyas, V. S.; Haase, F.; Stegbauer, L.; Savasci, G.; Podjaski, F.; Ochsenfeld, C.; Lotsch, B. V. Nat. Commun. 2015, 6, 1.

    61. [61]

      Wang, X. Y.; Chen, L. J.; Chong, S. Y.; Little, M. A.; Wu, Y.; Zhu, W. H.; Clowes, R.; Yan, Y.; Zwijnenburg, M. A.; Sprick, R. S.; Cooper, A. I. Nat. Chem. 2018, 10, 1180.  doi: 10.1038/s41557-018-0141-5

    62. [62]

      Biswal, B. P.; Vignolo-Gonzalez, H. A.; Banerjee, T.; Grunenberg, L.; Savasci, G.; Gottschling, K.; Nuss, J.; Ochsenfeld, C.; Lotsch, B. V. J. Am. Chem. Soc. 2019, 141, 11082  doi: 10.1021/jacs.9b03243

  • 加载中
    1. [1]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    2. [2]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    3. [3]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    13. [13]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    14. [14]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

    18. [18]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(179)
  • Abstract views(5340)
  • HTML views(2260)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return