Citation: Wang Mingyuan, Cui Xiaoyu, Cai Wensheng, Shao Xueguang. Temperature-Dependent Near-Infrared Spectroscopy for Sensitive Detection of Glucose[J]. Acta Chimica Sinica, ;2020, 78(2): 125-129. doi: 10.6023/A19120424 shu

Temperature-Dependent Near-Infrared Spectroscopy for Sensitive Detection of Glucose

  • Corresponding author: Shao Xueguang, xshao@nankai.edu.cn
  • Received Date: 12 December 2019
    Available Online: 13 February 2020

    Fund Project: the National Natural Science Foundation of China 21775076Project supported by the National Natural Science Foundation of China (No. 21775076) and the Fundamental Research Funds for the Central Universities (No. 63191743)the Fundamental Research Funds for the Central Universities 63191743

Figures(5)

  • Temperature-dependent near-infrared (NIR) spectroscopy has been proposed and used in the quantitative analysis of multi-component mixtures and the understanding of the interactions in solutions. Mutual factor analysis (MFA) was developed, in our previous work, to detect glucose content in aqueous solutions and serum samples using the NIR spectra measured at different temperatures. The essence of the algorithm is to extract and compare the spectral component, named as standardized signal (SS), mutually contained in the spectral data of different samples. The relative quantity of SS can be used to build the calibration model for quantitative analysis. Furthermore, the spectral information of water can be used for the analysis, because the change of the water spectrum with temperature is a reflection of the change in glucose content. In this work, serum samples with low glucose concentration were prepared and measured at the temperature range of 30~60℃ with a step of 5℃. The feasibility of MFA in the quantitative determination of low concentration samples was further studied. Serum solutions with glucose content of 1.0~15.0 mmol/L and 0.0~1.0 mmol/L were prepared, respectively. Before calculation of MFA, continuous wavelet transform (CWT) was used to improve the resolution of the spectra. The results show that MFA can achieve an accurate quantification of the glucose content. The linear correlation coefficients (R) of the calibration models between the relative quantity of SS and the concentration of glucose are 0.9923 and 0.9895, respectively, and the root-mean-squared error of prediction (RMSEP) are 0.35 and 0.07 mmol/L, respectively. The relative error of predicted concentration of samples in the validation set obtained from the calibration model of samples with a concentration of 1.0~15.0 mmol/L are in the range of -12.00%~5.64%, which are in a reasonable level for clinical uses. Temperature-dependent NIR spectroscopy combined with MFA may be a potential way for detecting the micro-content components in complex aqueous systems.
  • 加载中
    1. [1]

      Sharma, S.; Goodarzi, M.; Delanghe, J.; Ramon, H.; Saeys, W. Appl. Spectrosc. 2014, 68, 398.  doi: 10.1366/13-07217

    2. [2]

      Chu, M. X.; Miyajima, K.; Takahashi, D.; Arakawa, T.; Sano, K.; Sawada, S.; Kudo, H.; Iwasaki, Y.; Akiyoshi, K.; Mochizuki, M.; Mitsubayashi, K. Talanta 2011, 83, 960.  doi: 10.1016/j.talanta.2010.10.055

    3. [3]

      Hazen, K. H.; Arnold, M. A.; Small, G. W. Appl. Spectrosc. 1994, 48, 477.  doi: 10.1366/000370294775268910

    4. [4]

      Chen, J.; Arnold, M. A.; Small, G. W. Anal. Chem. 2004, 76, 5405.  doi: 10.1021/ac0498056

    5. [5]

      Liu, L. Z.; Arnold, M. A. Anal. Bioanal. Chem. 2009, 393, 669.  doi: 10.1007/s00216-008-2475-0

    6. [6]

      Cui, X. Y.; Liu, X. W.; Yu, X. M.; Cai, W. S.; Shao, X. G. Anal. Chim. Acta 2017, 957, 47.  doi: 10.1016/j.aca.2017.01.004

    7. [7]

      Shao, X. G.; Cui, X. Y.; Yu, X. M.; Cai, W. S. Talanta 2018, 183, 142.  doi: 10.1016/j.talanta.2018.02.043

    8. [8]

      Marquardt, L. A.; Arnold, M. A.; Small, G. W. Anal. Chem. 1993, 65, 3271.  doi: 10.1021/ac00070a018

    9. [9]

      Sharma, S.; Goodarzi, M.; Delanghe, J.; Ramon, H.; Saeys, W. Appl. Spectrosc. 2014, 68, 398.  doi: 10.1366/13-07217

    10. [10]

      Goodarzi, M.; Saeys, W. Talanta 2016, 146, 155.  doi: 10.1016/j.talanta.2015.08.033

    11. [11]

      Hazen, K. H.; Arnold, M. A.; Small, G. W. Anal. Chim. Acta 1998, 371, 255.  doi: 10.1016/S0003-2670(98)00318-3

    12. [12]

      Amerov, A. K.; Chen, J.; Small, G. W.; Arnold, M. A. Anal. Chem. 2005, 77, 4587.  doi: 10.1021/ac0504161

    13. [13]

      Kang, N.; Kasemsumran, S.; Woo, Y.; Kim, H.; Ozaki, Y. Chemom. Intell. Lab. Syst. 2006, 82, 90.  doi: 10.1016/j.chemolab.2005.08.015

    14. [14]

      Tsenkova, R. NIR News 2008, 19, 12.

    15. [15]

      Tsenkova, R. J. Near Infrared Spectrosc. 2009, 17, 303.  doi: 10.1255/jnirs.869

    16. [16]

      Tarumi, M.; Shimada, M.; Murakami, T.; Tamura, M.; Shimada, M.; Arimoto, H.; Yamada, Y. Phys. Med. Biol. 2003, 48, 2373.  doi: 10.1088/0031-9155/48/15/309

    17. [17]

      Cui, X. Y.; Cai, W. S.; Shao, X. G. RSC Adv. 2016, 6, 105729.  doi: 10.1039/C6RA18912A

    18. [18]

      Cheng, D.; Cai, W. S.; Shao, X. G. Appl. Spectrosc. 2018, 72, 1354.  doi: 10.1177/0003702818769410

    19. [19]

      Wang, L.; Zhu, X. W.; Cai, W. S.; Shao, X. G. Phys. Chem. Chem. Phys. 2019, 21, 5780.  doi: 10.1039/C8CP07153E

    20. [20]

      Zhu, X. W.; Cui, X. Y.; Cai, W. S.; Shao, X. G. Acta Chim. Sinica 2018, 76, 298. (in Chinese).  doi: 10.3969/j.issn.0253-2409.2018.03.006
       

    21. [21]

      Fan, M. L.; Cai, W. S.; Shao, X. G. Appl. Spectrosc. 2016, 71, 472.

    22. [22]

      Liu, X. W.; Cui, X. Y.; Yu, X. M.; Cai, W. S.; Shao, X. G. Chin. Chem. Lett. 2017, 28, 1447.  doi: 10.1016/j.cclet.2017.03.021

    23. [23]

      Ma, L.; Cui, X. Y.; Cai, W. S.; Shao, X. G. Phys. Chem. Chem. Phys. 2018, 20, 20132.  doi: 10.1039/C8CP01431K

    24. [24]

      Qi, L. H.; Cai, W. S.; Shao, X. G. Acta Chim. Sinica 2016, 74, 172. (in Chinese).
       

    25. [25]

      Shao, X. G.; Kang, J.; Cai, W. S. Talanta 2010, 82, 1017.  doi: 10.1016/j.talanta.2010.06.009

    26. [26]

      Kang, J.; Cai, W. S.; Shao, X. G. Talanta 2011, 85, 420.  doi: 10.1016/j.talanta.2011.03.089

    27. [27]

      Shao, X. G.; Cui, X. Y.; Wang, M.; Cai, W. S. Spectrochim. Acta Part A 2019, 213, 83.  doi: 10.1016/j.saa.2019.01.059

    28. [28]

      Czarnecki, M. A.; Morisawa, Y.; Futami, Y.; Ozaki, Y. Chem. Rev. 2015, 115, 9707.  doi: 10.1021/cr500013u

    29. [29]

      Šašić, S.; Segtnan, V. H.; Ozaki, Y. J. Phys. Chem. A 2002, 106, 760.  doi: 10.1021/jp013436p

    30. [30]

      Segtnan, V. H.; Šašić, S.; Isaksson, T.; Ozaki, Y. Anal. Chem. 2001, 73, 3153.  doi: 10.1021/ac010102n

    31. [31]

      Rajendran, R.; Rayman, G. J. Diabetes Sci. Technol. 2014, 8, 1081.  doi: 10.1177/1932296814538940

    32. [32]

      Shao, X. G.; Cai, W. S. Rev. Anal. Chem. 1998, 17, 235.

    33. [33]

      Shao, X. G.; Leung, A. K. M.; Chau, F. T. Acc. Chem. Res. 2003, 36, 276.  doi: 10.1021/ar990163w

    34. [34]

      Shao, X. G.; Ma, C. X. Chemom. Intell. Lab. Syst. 2003, 69, 157.  doi: 10.1016/j.chemolab.2003.08.001

  • 加载中
    1. [1]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    2. [2]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    10. [10]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(20)
  • Abstract views(670)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return