Citation: Wu Yan, Pang Aimin, Hu Lei, He Gensheng, Zhang Yingying, Zhang Lixiong, Li Minghai, Ma Zhenye. Preparation of α-Fe2O3/(IPDI-HTPB) Composite Nanoparticles and Their Catalytic Performance[J]. Acta Chimica Sinica, ;2020, 78(4): 337-343. doi: 10.6023/A19120419 shu

Preparation of α-Fe2O3/(IPDI-HTPB) Composite Nanoparticles and Their Catalytic Performance

  • Corresponding author: Li Minghai, lmh741998@163.com Ma Zhenye, 07197@njnu.edu.cn
  • Received Date: 9 December 2019
    Available Online: 11 March 2020

    Fund Project: Project supported by the Science and Technology on Aerospace Chemical Power Laboratory (No. STACPL120181B02-2)the Science and Technology on Aerospace Chemical Power Laboratory STACPL120181B02-2

Figures(9)

  • In ammonium perchlorate (AP) based composite propellants, α-Fe2O3 nanoparticles and hydroxyl terminated polybutadiene (HTPB) are commonly used as catalyst and binder respectively. Their properties and dispersion significantly affect the combustion performance of the composite propellants. However, α-Fe2O3 nanoparticles are hard to disperse uniformly in the binder HTPB owing to the high viscosity, which will decrease their catalytic activity. Directly composite processing of α-Fe2O3 nanoparticles with other main components of composite propellants may be an effective strategy to prevent from aggregation without introducing other components to the solid propellant at the same time. In this paper, the α-Fe2O3/ (IPDI-HTPB) composite nanoparticles were prepared by choosing curing agent isophorone diisocyanate (IPDI) as grafting bridge. The typical procedure was as follows: (1) The first step was to synthesize IPDI-HTPB. In order to adjudged the reaction terminal point of IPDI and HTPB, the reaction kinetics of HTPB and IPDI were first researched and the proper reaction conditions were chosen as follows:molar ratio of HTPB and IPDI is 1:1, reaction temperature is under 80℃ and reaction time is 2 h. (2) The second step was to synthesize α-Fe2O3/(IPDI-HTPB) composite nanoparticles. Firstly, the stoichiometric α-Fe2O3 nanoparticles were dispersed in toluene under ultrasound for 10 min. Secondly, the mixture were added in the above IPDI-HTPB solution and the reaction kept for 4 h. Thirdly, the α-Fe2O3/(IPDI-HTPB) composite nanoparticles were centrifuged and washed with toluene and ether for several times. Finally, α-Fe2O3/(IPDI-HTPB) composite nanoparticles were dried in the oven at 80℃ for 12 h. (3) The structure of α-Fe2O3/(IPDI-HTPB) composite nanoparticles were characterized by X-ray diffractometer (XRD), transmittance electron microscopy (TEM), Fourier transform infrared spectrometer (FTIR) and thermogravimetric analysis (TGA). It was observed that HTPB could be chemically coated on the surface of the α-Fe2O3 nanoparticles by the grafting activity of IPDI. The depth of the IPDI-HTPB was nearly 5 nm. The α-Fe2O3/(IPDI-HTPB) composite nanoparticles showed hydrophobicity after the composite process. Compare with the pure α-Fe2O3 nanoparticles, α-Fe2O3 nanoparticles in α-Fe2O3/IPDI-HTPB composite nanoparticles showed better catalytic activity on the thermal decomposition of AP.
  • 加载中
    1. [1]

      Wu, J. J.; Ji, Z. Y.; Shen, X. P.; Miao, X. L.; Xu, K. Q. Acta Chim. Sinica 2017, 75, 1207(in Chinese).

    2. [2]

      Mu, Y.; Jia, F. L.; Ai, Z. H.; Zhang, L. Z. Acta Chim. Sinica 2017, 75, 538(in Chinese).

    3. [3]

      Cui, S. Z.; Yang, H. P.; Sun, H. H.; Nie, K.; Wu, J. M. Acta Chim. Sinica 2016, 74, 995(in Chinese).
       

    4. [4]

      Padwal, M. B.; Varmal, M. Combust. Sci. Technol. 2018, 190, 1614.  doi: 10.1080/00102202.2018.1460599

    5. [5]

      Chang, H. Z.; Zhang, T.; Dang, H.; Chen, X. Y.; You, Y. C.; Schwank, J.; Li, J. H. Catal. Sci. Technol. 2018, 8, 3313.  doi: 10.1039/C8CY00810H

    6. [6]

      Niu, H. H.; Zhang, S. W.; Ma, Q.; Qin, S. X.; Wan, L.; Xu, J. Z.; Miao, S. D. RSC Adv. 2013, 3, 17228.  doi: 10.1039/c3ra42214c

    7. [7]

      Narayani, H.; Jose, M.; Sriram, K.; Shukla, S. Environ. Sci. Pollut. Res. 2018, 25, 20304.  doi: 10.1007/s11356-017-8381-2

    8. [8]

      Shahrousvand, M.; Hoseinian, M. S.; Ghollasi, M.; Karbalaeimahdi, A.; Salimi, A.; Tabar, F. A. Mater. Sci. Eng. C 2017, 74, 556.  doi: 10.1016/j.msec.2016.12.117

    9. [9]

      Ke, X.; Zhou, X.; Hao, G. Z.; Xiao, L.; Liu, J.; Jiang, W. Appl. Surf. Sci. 2017, 407, 137.  doi: 10.1016/j.apsusc.2017.02.138

    10. [10]

      Xu, H.; Wang, X. B.; Zhang, L. Z. Powder Technol. 2008, 185, 176.  doi: 10.1016/j.powtec.2007.10.011

    11. [11]

      Song, L. M.; Zhang, S. J.; Chen, B.; Ge, J. J.; Jia, X. C. Colloids Surf. A 2010, 360, 1.  doi: 10.1016/j.colsurfa.2010.01.012

    12. [12]

      Atta, A. H.; El-ghamry, M. A.; Hamzaoui, A.; Refat, M. S. J. Mol. Struct. 2015, 1086, 246.  doi: 10.1016/j.molstruc.2014.12.085

    13. [13]

      Jadhav, S. A.; Bongiovanni, R. L.; Marchisio, D.; Fontana, D.; Egger, C. Pigm. Resin Technol. 2014, 43, 219.  doi: 10.1108/PRT-07-2013-0057

    14. [14]

      Iida, H.; Nakanishi, T.; Osaka, T. Electrochim. Acta 2005, 51, 855.  doi: 10.1016/j.electacta.2005.04.056

    15. [15]

      Zhan, J. Y.; Tian, G. F.; Jiang, L. Z.; Wu, Z. P.; Wu, D. Z.; Yang, X. P. Thin Solid Films 2008, 516, 6315.  doi: 10.1016/j.tsf.2007.12.090

    16. [16]

      Liu, J.; Ke, X.; Xiao, L.; Hao, G. Z.; Rong, Y. B.; Jin, C. S.; Jiang, W.; Li, F. S. Propellants Explos. Pyrotech. 2018, 43, 144.  doi: 10.1002/prep.201700211

    17. [17]

      Jin, B.; Peng, R.; Zhao, F.; Yi, J.; Xu, S.; Wang, S.; Chu, S. Propellants Explos. Pyrotech. 2014, 39, 874.  doi: 10.1002/prep.201400101

    18. [18]

      Lu, Y. W.; Zhu, Y. F.; Xu, P. F.; Ye, P.; Gao, B.; Sun, Y.; Guo, C. P. J. Solid State Chem. 2018, 258, 718.  doi: 10.1016/j.jssc.2017.12.003

    19. [19]

      Isert, S.; Groven, L. J.; Lucht, R. P.; Son, S. F. Combust. Flame 2015, 162, 1821.  doi: 10.1016/j.combustflame.2014.11.040

    20. [20]

      Hu, L; Ma, Z. Y.; Ji, M. W.; Zhang, L. X. Acta Chim. Sinica 2011, 69, 3028(in Chinese).

    21. [21]

      Yin, L.; Chu, J. L. Paint Coat. Ind. 1999, 29, 34.

    22. [22]

      Hailu, K.; Guthausen, G.; Becker, W.; König, A.; Bendfeld, A.; Geissler, E. Polym. Test. 2010, 29, 513.  doi: 10.1016/j.polymertesting.2010.03.001

    23. [23]

      Catherine, K. B.; Krishnan, K.; Nina, K. B. J. Therm. Anal. Calorim. 2000, 59, 93.  doi: 10.1023/A:1010127727162

    24. [24]

      Yang, R. J.; Ma, Q. Y. J. Solid Rocket Technol. 1991, 9, 78(in Chinese).

    25. [25]

      Ganga, T.; Devi, G. T.; Kannan, M. P.; Hema, B. Thermochim. Acta 1996, 285, 269.  doi: 10.1016/0040-6031(96)02912-7

    26. [26]

      Winfried, K. R.; Eli, S. F. J. Phys. Chem. 1970, 74, 3317.  doi: 10.1021/j100712a002

    27. [27]

      Ma, Z. Y.; Wu, R. J.; Song, J.; Li, C.; Chen, R. Z.; Zhang, L. X. Propellants Explos. Pyrotech. 2012, 37, 183.  doi: 10.1002/prep.201000132

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    9. [9]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    10. [10]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    16. [16]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

Metrics
  • PDF Downloads(17)
  • Abstract views(967)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return