Citation: Ma Yun, Chen Kexin, Guo Zeling, Liu Shujuan, Zhao Qiang, Wong Wai-Yeung. Phosphorescent Soft Salt Complexes for Optoelectronic Applications[J]. Acta Chimica Sinica, ;2020, 78(1): 23-33. doi: 10.6023/A19110407 shu

Phosphorescent Soft Salt Complexes for Optoelectronic Applications

  • Corresponding author: Zhao Qiang, iamqzhao@njupt.edu.cn Wong Wai-Yeung, wai-yeung.wong@polyu.edu.hk
  • Received Date: 15 November 2019
    Available Online: 18 January 2019

    Fund Project: the National Natural Science Foundation of China 51873176the Hong Kong Research Grants Council PolyU 153062/18Pthe National Natural Science Foundation of China 61825503Project supported by the National Natural Science Foundation of China (Nos. 51873176, 21701087, 61825503), the Hong Kong Research Grants Council (PolyU 153062/18P and C6009-17G), the Hong Kong Polytechnic University (1-ZE1C) and Ms Clarea Au for the Endowed Professorship in Energy (847S)the National Natural Science Foundation of China 21701087the Hong Kong Research Grants Council C6009-17Gthe Hong Kong Polytechnic University 1-ZE1CMs Clarea Au for the Endowed Professorship in Energy 847S

Figures(10)

  • Phosphorescent ion-paired complexes, which consist of two oppositely charged transition metal complexes with excellent photophysical properties, are called "soft salts" because of the soft nature of the ions. In recent decades, phosphorescent soft salt complexes have gained an increasing attention and this review aims to summarize the syntheses and photophysical properties of those complexes, and recent advances of them in different optoelectronic applications. Generally, phosphorescent soft salt complexes are synthesized via salt metathesis reactions between two oppositely charged organometallic components. By changing the chemical structure of ligands or the metal centers of the different ionic complexes, the photophysical properties of soft salt complexes can be easily regulated. Moreover, most of the soft salt complexes show concentration-dependent photoluminescence (PL) spectra due to the energy transfer between positive and negative ions. Thus, white light emission can be obtained by dissolving ion-paired complex consisting of two ionic components with blue and yellow emission in solution at certain concentration. Considering the excellent photophysical properties and easy tunability of phosphorescent soft salt complexes, the application of them in diverse optoelectronic fields, such as organic light emitting diodes, bioimaging, photodynamic therapy, electrochromic luminescence devices, and so on, have been explored. For example, Thompson and co-workers utilized iridium(Ⅲ) complexes based phosphorescent soft salts to fabricate organic light emitting diodes for the first time. Our group have first developed soft salts based phosphorescent probes for ratiometric and lifetime imaging of pH and oxygen changes in living cells. In addition, we have found that soft salt complexes showed an enhanced singlet oxygen generation rate due to the efficient energy transfer between two ionic components, which has great potential to act as a photosensitizer for photodynamic therapy of cancer cells. Huang and co-workers have proposed a new strategy to design electrochromic luminescence materials based on soft salt complexes, which display tunable and reversible electrochromic luminescence. In summary, phosphorescent soft salt complexes possessing excellent photophysical properties show great potential in diverse optoelectronic applications.
  • 加载中
    1. [1]

      Abd-El-Aziz, A. S.; Agatemor, C.; Wong, W. Y. Macromolecules Incorporating Transition Metals, Vol. 27, Royal Society of Chemistry, London, United Kingdom, 2018.  doi: 10.1039/9781788010368

    2. [2]

      Zhou, G. J.; Wong, W. Y. Chem. Soc. Rev. 2011, 40, 2541.  doi: 10.1039/c0cs00094a

    3. [3]

      Köhler, A.; Wilson, J. S.; Friend, R. H. Adv. Mater. 2002, 14, 701.  doi: 10.1002/1521-4095(20020517)14:10<701::AID-ADMA701>3.0.CO;2-4

    4. [4]

      Xu, G. T.; Li, J.; Chen, Z. N. Acta Chim. Sinica 2014, 72, 667.
       

    5. [5]

      Wang, L. H.; Guo, J. F.; Li, Y. J.; Su, Y. R.; Liu, J. W.; Li, Y. H.; Wang, S.; Shimada, S.; Huang, W. Chinese J. Chem. 2017, 35, 507.  doi: 10.1002/cjoc.201600666

    6. [6]

      Chen, Z. Q.; Bian, Z. Q.; Huang, C. H. Adv. Mater. 2010, 22, 1534.  doi: 10.1002/adma.200903233

    7. [7]

      Huang, T.; Jiang, W.; Duan, L. J. Mater. Chem. C 2018, 6, 5577.  doi: 10.1039/C8TC01139G

    8. [8]

      Chou, P. T.; Chi, Y. Chem. Eur. J. 2007, 13, 380.  doi: 10.1002/chem.200601272

    9. [9]

      Chow, P. K.; Cheng, G.; Tong, G. S. M.; To, W. P.; Kwong, W. L.; Low, K. H.; Kwok, C. C.; Ma, C. S.; Che, C. M. Angew. Chem., Int. Ed. 2015, 54, 2084.  doi: 10.1002/anie.201408940

    10. [10]

      Ma, Y.; Shen, L.; She, P. F.; Hou, Y. Q.; Yu, Y. X.; Zhao, J. Z. Adv. Optical Mater. 2019, 1801657.

    11. [11]

      Zhang, K. Y.; Yu, Q.; Wei, H. J.; Liu, S. J.; Zhao, Q.; Huang, W. Chem. Rev. 2018, 118, 1770.  doi: 10.1021/acs.chemrev.7b00425

    12. [12]

      Martir, D. R.; Zysman-Colman, E. Coord. Chem. Rev. 2018, 364, 86.  doi: 10.1016/j.ccr.2018.03.016

    13. [13]

      Ma, D.; Duan, L.; Wei, Y.; He, L.; Wang, L.; Qiu, Y. Chem. Commun. 2014, 50, 530.  doi: 10.1039/C3CC47362G

    14. [14]

      Zhang, K. Y.; Chen, X.; Sun, G.; Zhang, T.; Liu, S.; Zhao, Q.; Huang, W. Adv. Mater. 2016, 28, 7137.  doi: 10.1002/adma.201601978

    15. [15]

      Zhao, Q.; Li, F.; Huang, C. Chem. Soc. Rev. 2010, 39, 3007.  doi: 10.1039/b915340c

    16. [16]

      Chen, X. L.; Yu, R.; Zhang, Q. K.; Zhou, L. J.; Wu, X. Y.; Zhang, Q.; Lu, C. Z. Chem. Mater. 2013, 25, 3910  doi: 10.1021/cm4024309

    17. [17]

      Zhang, K. Y.; Liu, H. W.; Tang, M. C.; Choi, A. W. T.; Zhu, N.; Wei, X. G.; Lo, K. K. W. Inorg. Chem. 2015, 54, 6582.  doi: 10.1021/acs.inorgchem.5b00944

    18. [18]

      Liu, J.; Yee, K. K.; Lo, K. K. W.; Zhang, K. Y.; To, W. P.; Che, C. M.; Xu, Z. J. Am. Chem. Soc. 2014, 136, 2818.  doi: 10.1021/ja411067a

    19. [19]

      Housecroft, C. E.; Constable, E. C. Coord. Chem. Rev. 2017, 350, 155.  doi: 10.1016/j.ccr.2017.06.016

    20. [20]

      Chen, G. Y.; Chang, B. R.; Shih, T. A.; Lin, C. H.; Lo, C. L.; Chen, Y. Z.; Yang, Z. P. Chem. Eur. J. 2019, 25, 5489.  doi: 10.1002/chem.201805902

    21. [21]

      Xie, Z.; Ma, L.; de Krafft, K. E.; Jin, A.; Lin, W. J. Am. Chem. Soc. 2010, 132, 922.  doi: 10.1021/ja909629f

    22. [22]

      You, Y.; Lee, S.; Kim, T.; Ohkubo, K.; Chae, W. S.; Fukuzumi, S.; Lippard, S. J. Am. Chem. Soc. 2011, 133, 18328.  doi: 10.1021/ja207163r

    23. [23]

      Wu, C.; Chen, H. F.; Wong, K. T.; Thompson, M. E. J. Am. Chem. Soc. 2009, 132, 3133.

    24. [24]

      Mauro, M.; Schuermann, K. C.; Prétôt, R.; Hafner, A.; Mercandelli, P.; Sironi, A.; De Cola, L. Angew. Chem., Int. Ed. 2010, 49, 1222.  doi: 10.1002/anie.200905713

    25. [25]

      Ionescu, A.; Szerb, E. I.; Yadav, Y. J.; Talarico, A. M.; Ghedini, M.; Godbert, N. Dalton Trans. 2014, 43, 784.  doi: 10.1039/C3DT52077C

    26. [26]

      Fiorini, V.; D'Ignazio, A.; Magee, K. D.; Ogden, M. I.; Massi, M.; Stagni, S. Dalton Trans. 2016, 45, 3256.  doi: 10.1039/C5DT04958J

    27. [27]

      Sandroni, M.; Zysman-Colman, E. Dalton Trans. 2014, 43, 3676.  doi: 10.1039/c3dt53170h

    28. [28]

      Ho, C. L.; Wong, W. Y. Coord. Chem. Rev. 2013, 257, 1614.  doi: 10.1016/j.ccr.2012.08.023

    29. [29]

      Fan, C.; Yang, C. Chem. Soc. Rev. 2014, 43, 6439.  doi: 10.1039/C4CS00110A

    30. [30]

      Lee, J.; Chen, H. F.; Batagoda, T.; Coburn, C.; Djurovich, P. I.; Thompson, M. E.; Forrest, S. R. Nat. Mater. 2016, 15, 92.  doi: 10.1038/nmat4446

    31. [31]

      Kim, J. B.; Han, S. H.; Yang, K.; Kwon, S. K.; Kim, J. J.; Kim, Y. H. Chem. Commun. 2015, 51, 58.  doi: 10.1039/C4CC07768G

    32. [32]

      Kesarkar, S.; Mróz, W.; Penconi, M.; Pasini, M.; Destri, S.; Cazzaniga, M.; Bossi, A. Angew. Chem., Int. Ed. 2016, 55, 2714.  doi: 10.1002/anie.201509798

    33. [33]

      Chen, S. Q.; Dai, J.; Zhou, K. F.; Luo, Y. J.; Su, S. J.; Pu, X. M.; Huang, Y.; Lu, Z. Y. Acta Chim. Sinica 2017, 75, 367.
       

    34. [34]

      Dumur, F.; Nasr, G.; Wantz, G.; Mayer, C. R.; Dumas, E.; Guerlin, A.; Miomandre, F.; Clavier, G.; Bertin, D.; Gigmes, D. Org. Electron. 2011, 12, 1683.  doi: 10.1016/j.orgel.2011.06.014

    35. [35]

      Nasr, G.; Guerlin, A.; Dumur, F.; Beouch, L.; Dumas, E.; Clavier, G.; Miomandre, F.; Goubard, F.; Gigmes, D.; Bertin, D.; Wantze, G.; Mayer, C. R. Chem. Commun. 2011, 47, 10698.  doi: 10.1039/c1cc13733f

    36. [36]

      Stephens, D. J.; Allan, V. J. Science 2003, 300, 82.  doi: 10.1126/science.1082160

    37. [37]

      Dmitriev, R. I.; Papkovsky, D. B. Cell. Mol. Life Sci. 2012, 69, 2025.  doi: 10.1007/s00018-011-0914-0

    38. [38]

      Wang, X. D.; Wolfbeis, O. S. Chem. Soc. Rev. 2014, 43, 3666.  doi: 10.1039/C4CS00039K

    39. [39]

      Knox, H. J.; Hedhli, J.; Kim, T. W.; Khalili, K.; Dobrucki, L. W.; Chan, J. Nat. Commun. 2017, 8, 1794.  doi: 10.1038/s41467-017-01951-0

    40. [40]

      Papkovsky, D. B.; Dmitriev, R. I. Chem. Soc. Rev. 2013, 42, 8700.  doi: 10.1039/c3cs60131e

    41. [41]

      Dmitriev, R. I.; Borisov, S. M.; Dussmann, H.; Sun, S. W.; Muller, B. J.; Prehn, J.; Baklaushev, V. P.; Klimant, I.; Papkovsky, D. B. ACS Nano 2015, 9, 5275.  doi: 10.1021/acsnano.5b00771

    42. [42]

      Aigner, D.; Dmitriev, R. I.; Borisov, S. M.; Papkovsky, D. B.; Klimant, I. J. Mater. Chem. B 2014, 2, 6792.  doi: 10.1039/C4TB01006J

    43. [43]

      Baggaley, E.; Botchway, S. W.; Haycock, J. W.; Morris, H.; Sazanovich, I. V.; Williams, J. G.; Weinstein, J. A. Chem. Sci. 2014, 5, 879.  doi: 10.1039/C3SC51875B

    44. [44]

      Wang, J. Q.; Hou, X. J.; Jin, C. Z.; Chao, H. Chinese J. Chem. 2016, 34, 583.  doi: 10.1002/cjoc.201500769

    45. [45]

      Lee, M. H.; Han, J. H.; Lee, J. H.; Park, N.; Kumar, R.; Kang, C.; Kim, J. S. Angew. Chem., Int. Ed. 2013, 52, 6206.  doi: 10.1002/anie.201301894

    46. [46]

      Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem., Int. Ed. 2006, 45, 4562.  doi: 10.1002/anie.200503873

    47. [47]

      Jares-Erijman, E. A.; Jovin, T. M. Nat. Biotechnol. 2003, 21, 1387.  doi: 10.1038/nbt896

    48. [48]

      Xiong, L.; Zhao, Q.; Chen, H.; Wu, Y.; Dong, Z.; Zhou, Z.; Li, F. Inorg. Chem. 2010, 49, 6402.  doi: 10.1021/ic902266x

    49. [49]

      Ma, Y.; Liang, H.; Zeng, Y.; Yang, H.; Ho, C. L.; Xu, W. J.; Zhao, Q.; Huang, W.; Wong, W. Y. Chem. Sci. 2016, 7, 3338.  doi: 10.1039/C5SC04624F

    50. [50]

      Gottlieb, R. A.; Nordberg, J.; Skowronski, E.; Babior, B. M. Proc. Natl. Acad. Sci. 1996, 93, 654.  doi: 10.1073/pnas.93.2.654

    51. [51]

      Hoyt, K. R.; Reynolds, I. J. J. Neurochem. 1998, 71, 1051.

    52. [52]

      Casey, J. R.; Grinstein, S.; Orlowski, J. Nat. Rev. Mol. Cell Biol. 2010, 11, 50.  doi: 10.1038/nrm2820

    53. [53]

      Shahrokhian, S. Anal. Chem. 2001, 73, 5972.  doi: 10.1021/ac010541m

    54. [54]

      Seshadri, S.; Beiser, A.; Selhub, J.; Jacques, P. F.; Rosenberg, I. H.; D'Agostino, R. B.; Wilson, P. W. F.; Wolf, P. A. N. Engl. J. Med. 2002, 346, 476.  doi: 10.1056/NEJMoa011613

    55. [55]

      Ma, Y.; Liu, S. J.; Yang, H. R.; Wu, Y. Q.; Yang, C. J.; Liu, X. M.; Zhao, Q.; Wu, H. Z.; Liang, J. C.; Li, F. Y.; Huang, W. J. Mater. Chem. 2011, 21, 18974.  doi: 10.1039/c1jm13513a

    56. [56]

      Liu, S.; Xu, A.; Chen, Z.; Ma, Y.; Yang, H.; Shi, Z.; Zhao, Q. Opt. Express. 2016, 24, 28247.  doi: 10.1364/OE.24.028247

    57. [57]

      Acker, T.; Acker, H. J. Exp. Biol. 2004, 207, 3171.  doi: 10.1242/jeb.01075

    58. [58]

      Tobita, S.; Yoshihara, T. Curr. Opin. Chem. Biol. 2016, 33, 39.  doi: 10.1016/j.cbpa.2016.05.017

    59. [59]

      Denko, N. C. Nat. Rev. Cancer. 2008, 8, 705.  doi: 10.1038/nrc2468

    60. [60]

      Simon, M. C.; Liu, L.; Barnhart, B. C.; Young, R. M. Annu. Rev. Physiol. 2008, 70, 51.  doi: 10.1146/annurev.physiol.70.113006.100526

    61. [61]

      Ma, Y.; Dong, Y. F.; Zou, L.; Shen, L.; Liu, S. Y.; Liu, S. J.; Huang, W.; Zhao, Q.; Wong, W. Y. Eur. J. Inorg. Chem. 2018, 20, 345.

    62. [62]

      Ogilby, P. R. Chem. Soc. Rev. 2010, 39, 3181.  doi: 10.1039/b926014p

    63. [63]

      Apel, K.; Hirt, H. Annu. Rev. Plant Biol. 2004, 55, 373.  doi: 10.1146/annurev.arplant.55.031903.141701

    64. [64]

      Greer, A. Acc. Chem. Res. 2006, 39, 797.  doi: 10.1021/ar050191g

    65. [65]

      Zhou, Q. X.; Wang, X. S. Acta Chim. Sinica 2017, 75, 49.  doi: 10.11862/CJIC.2017.013

    66. [66]

      Nam, J. S.; Kang, M. G.; Kang, J.; Park, S. Y.; Lee, S. J. C.; Kim, H. T.; Seo, J. K.; Kwon, O. H.; Lim, M. H.; Rhee, H. W.; Kwon, T. H.; J. Am. Chem. Soc. 2016, 138, 10968.  doi: 10.1021/jacs.6b05302

    67. [67]

      Du, E.; Hu, X.; Roy, S.; Wang, P.; Deasy, K.; Mochizuki, T.; Zhang, Y. Chem. Commun. 2017, 53, 6033.  doi: 10.1039/C7CC03337K

    68. [68]

      Lv, W.; Zhang, Z.; Zhang, K. Y.; Yang, H.; Liu, S.; Xu, A.; Guo, S.; Zhao, Q.; Huang, W. Angew. Chem., Int. Ed. 2016, 55, 9947.  doi: 10.1002/anie.201604130

    69. [69]

      Ma, Y.; Zhang, S. J.; Wei, H. J.; Dong, Y. F.; Shen, L.; Liu, S. J.; Zhao, Q.; Liu, L.; Wong, W. Y. Dalton Trans. 2018, 47, 5582.  doi: 10.1039/C8DT00720A

    70. [70]

      Sun, H. B.; Liu, S. J.; Lin, W. P.; Zhang, K. Y.; Lv, W.; Huang X.; Huo, F. W.; Yang, H. R.; Jenkins, G.; Zhao, Q.; Huang, W. Nat. Commun. 2014, 5, 3601.  doi: 10.1038/ncomms4601

    71. [71]

      Ma, Y.; Yang, J.; Liu, S. J.; Xia, H. T.; She, P. F.; Jiang, R.; Zhao, Q. Adv. Optical Mater. 2017, 1700587.

    72. [72]

      Ma, Y.; Liu, S. J.; Yang, H. R.; Zeng, Y.; She, P. F.; Zhu, N. Y.; Ho, C. L.; Zhao, Q.; Huang, W.; Wong, W. Y. Inorg. Chem. 2017, 56, 2409.  doi: 10.1021/acs.inorgchem.6b02319

    73. [73]

      Guo, S.; Huang, T. C.; Liu, S. J.; Zhang, K. Y.; Yang, H. R.; Han, J. M.; Zhao, Q.; Huang, W. Chem. Sci. 2017, 8, 348.  doi: 10.1039/C6SC02837C

    74. [74]

      Liu, Q.; Xie, M.; Chang, X. Y.; Cao, S.; Zou, C.; Fu, W. F.; Che, C. M.; Chen, Y.; Lu, W. Angew. Chem., Int. Ed. 2018, 57, 6279.  doi: 10.1002/anie.201803965

    75. [75]

      Lehn, J. M. Science 2002, 295, 2400.  doi: 10.1126/science.1071063

    76. [76]

      Aida, T.; Meijer, E. W.; Stupp, S. I. Science 2012, 335, 813.  doi: 10.1126/science.1205962

    77. [77]

      Aliprandi, A.; Mauro, M.; De Cola, L. Nat. Chem. 2016, 8, 10.  doi: 10.1038/nchem.2383

    78. [78]

      Ma, Y.; Zhao, W. W.; She, P. F.; Liu, S. Y.; Shen, L.; Li, X. L.; Liu, S. J.; Zhao, Q.; Huang, W.; Wong, W. Y. Small Methods 2019, 1900142.

    79. [79]

      Po, C.; Tam, A. Y. Y.; Wong, K. M. C.; Yam, V. W. W. J. Am. Chem. Soc. 2011, 133, 12136.  doi: 10.1021/ja203920w

    80. [80]

      Po, C.; Yam, V. W. W. Chem. Sci. 2014, 5, 4868.  doi: 10.1039/C4SC01588F

    81. [81]

      Aliprandi, A.; Genovese, D.; Mauro, M.; De Cola, L. Chem. Lett. 2015, 44, 1152.  doi: 10.1246/cl.150592

    82. [82]

      Chow, P.; Cheng, G.; Tong, G. S. M.; To, W.; Kwong, W.; Low, K.; Kwok, C.; Ma, C. S.; Che, C. M. Angew. Chem., Int. Ed. 2015, 54, 2084.  doi: 10.1002/anie.201408940

    83. [83]

      Camerel, F.; Ziessel, R.; Donnio, B.; Bourgogne, C.; Guillon, D.; Schmutz, M.; Iacovita, C.; Bucher, J. Angew. Chem., Int. Ed. 2007, 46, 2659.  doi: 10.1002/anie.200604012

    84. [84]

      Chan, M. H. Y.; Ng, M.; Leung, S. Y. L.; Lam, W. H.; Yam, V. W. W. J. Am. Chem. Soc. 2017, 139, 8639.  doi: 10.1021/jacs.7b03635

    85. [85]

      Li, Y. H.; Zeng, W. J.; Lai, W. Y.; Shimada, S.; Wang, S.; Wang, L. H.; Huang, W. Chinese J. Chem. 2015, 33, 1206.  doi: 10.1002/cjoc.201500418

    86. [86]

      Wong, V. C. H.; Po, C.; Leung, S. Y. L.; Chan, A. K. W.; Yang, S. Y.; Zhu, B. R.; Cui, X. D.; Yam, V. W. W. J. Am. Chem. Soc. 2018, 140, 657.  doi: 10.1021/jacs.7b09770

  • 加载中
    1. [1]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    2. [2]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    3. [3]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    12. [12]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    15. [15]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    16. [16]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    17. [17]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    18. [18]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    19. [19]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    20. [20]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

Metrics
  • PDF Downloads(26)
  • Abstract views(1548)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return