Citation: Chen Yingying, Liu Huan, Cheng Yan, Xie Qingji. Preparation of Honeycomb-structured AuPtCu Electrocatalyst by Dynamic Hydrogen Bubble and Sacrificial Cu Templates for Oxidation of Formic Acid[J]. Acta Chimica Sinica, ;2020, 78(4): 330-336. doi: 10.6023/A19110400 shu

Preparation of Honeycomb-structured AuPtCu Electrocatalyst by Dynamic Hydrogen Bubble and Sacrificial Cu Templates for Oxidation of Formic Acid

  • Corresponding author: Xie Qingji, xieqj@hunnu.edu.cn
  • Received Date: 12 November 2019
    Available Online: 11 March 2020

    Fund Project: the National Natural Science Foundation of China 21475041Project supported by the National Natural Science Foundation of China (Nos. 21675050, 21475041 and 21775137), Hunan Lotus Scholars Program (2011) and Foundation of the Science & Technology Department of Hunan Province (No. 2016SK2020)the National Natural Science Foundation of China 21675050the National Natural Science Foundation of China 21775137Foundation of the Science & Technology Department of Hunan Province 2016SK2020Hunan Lotus Scholars Program 2011

Figures(5)

  • Improving the performance of electrocatalytic formic acid oxidation is the key issue to develop high-performance direct formic acid fuel cells (DFAFC). Pt-based and Pd-based materials are the important electrocatalysts for formic acid oxidation. Micro/nano-porous metal materials are widely concerned in the electrochemistry field due to the high specific electrode-surface area. The dynamic hydrogen bubble template (DHBT) method has been widely used for preparing the three-dimensional honeycomb-like porous nano-metals (3DHPNMs). However, as far as we know, the use of a sacrificial metal template to prepare the 3DHPNMs with improved performance for the electrocatalytic oxidation of small organic molecules has not been reported. Herein, a three-dimensional honeycomb-like porous nano-AuPtCu (3DHPN-AuPtCu) composite was electrodeposited on a gold-plated glassy carbon electrode (Aupla/GCE) by the DHBT method, followed by anodic stripping of Cu to yield a 3DHPN-AuPtCu/Aupla/GCE. The relevant modified electrodes were characterized by cyclic voltammetry (CV), metallographic microscopy, scanning electron microscopy (SEM), energy dispersive spectroscopy and inductively coupled plasma-atomic emission spectrometry. The SEM results clearly revealed that the use of the sacrificial Cu template can modulate the metal-honeycomb structure, and the 3DHPN-AuPtCu/Aupla/GCE can thus possess the better micro/nano-porous structure and the improved electrocatalytic performance than a Cu-template-free 3DHPN-AuPt/Aupla/GCE. In our opinion, the simultaneous electrodeposition of Cu can intervene in the electrodeposition of Au and Pt, and thus a new structure with more active sites exposed and the electrocatalysis performance improved can be obtained after the anodic stripping of electrodeposited Cu. As a result, the 3DHPN-AuPtCu/Aupla/GCE exhibited high anti-poisoning nature and high stability, because many discontinuous Pt atoms on this electrode can suppress the formation of adsorption-state COads during the electrocatalytic oxidation of formic acid. The electrocatalytic oxidation peak current density on 3DHPN-AuPtCu/Aupla/GCE in 0.5 mol/L aqueous H2SO4 containing 0.2 mol/L HCOOH was 12.5 mA·cmPt-2 (CV, -0.3~1.0 V, 50 mV/s), which is superior to the control electrodes and many reported Pt-based electrocatalysis electrodes. The suggested double- template method for preparing honeycomb-structured micro/nano-porous metal materials with improved performance has the potential for wider electrocatalysis and electroanalysis applications.
  • 加载中
    1. [1]

      Kim, J.; Roh, C.-W.; Sahoo, S. K.; Yang, S.; Bae, J.; Han, J. W.; Lee, H. Adv. Energy Mater. 2018, 8, 1701476.  doi: 10.1002/aenm.201701476

    2. [2]

      Marcinkowski, M. D.; Murphy, C. J.; Liriano, M. L.; Wasio, N. A.; Lucci, F. R.; Sykes, E. C. H. ACS Catal. 2015, 5, 7371.  doi: 10.1021/acscatal.5b01994

    3. [3]

      Fan, H. s.; Cheng, M.; Wang, L.; Song, Y. j.; Cui, Y.; Wang, R. m. Nano Energy 2018, 48, 1.  doi: 10.1016/j.nanoen.2018.03.018

    4. [4]

      Wang, X.-M.; Wang, M.-E.; Zhou, D.-D.; Xia, Y.-Y. Phys. Chem. Chem. Phys. 2011, 13, 13594.  doi: 10.1039/c1cp21680e

    5. [5]

      Li, M.; Liu, R.; Han, G.; Tian, Y.; Chang, Y.; Xiao, Y. Chin. J. Chem. 2017, 35, 1405.  doi: 10.1002/cjoc.201700061

    6. [6]

      Li, N. Chin. J. Chem. 2016, 34, 1129.  doi: 10.1002/cjoc.201600427

    7. [7]

      Cao, J.; Zhu, Z.; Zhao, W.; Xu, J.; Chen, Z. Chin. J. Chem. 2016, 34, 1086.  doi: 10.1002/cjoc.201600366

    8. [8]

      Liu, J.; Wu, B.; Gao, Y. Acta Chim. Sinica 2012, 70, 1743.

    9. [9]

      Shi, Y.; Li, J.; Xing, J.; Xiao, M.; Chen, Y.; Zhou, Y.; Lu, T.; Tang, Y. Acta Chim. Sinica 2012, 70, 1257.  doi: 10.3866/PKU.WHXB201202212

    10. [10]

      Huang, X.; Zhao, Z.; Fan, J.; Tan, Y.; Zheng, N. J. Am. Chem. Soc. 2011, 133, 4718.  doi: 10.1021/ja1117528

    11. [11]

      Xia, B. Y.; Wu, H. B.; Yan, Y.; Lou, X. W.; Wang, X. J. Am. Chem. Soc. 2013, 135, 9480.  doi: 10.1021/ja402955t

    12. [12]

      Ji, X.; Lee, K. T.; Holden, R.; Zhang, L.; Zhang, J.; Botton, G. A.; Couillard, M.; Nazar, L. F. Nat. Chem. 2010, 2, 286.  doi: 10.1038/nchem.553

    13. [13]

      Wang, R.; Wang, C.; Cai, W.-B.; Ding, Y. Adv. Mater. 2010, 22, 1845.  doi: 10.1002/adma.200903548

    14. [14]

      Zhang, Q.; Yao, Z.; Zhou, R.; Du, Y.; Yang, P. Acta Chim. Sinica 2012, 70, 2149.

    15. [15]

      Zhou, R.; Zhang, H.; Du, Y.; Yang, P. Acta Chim. Sinica 2011, 69, 1533.

    16. [16]

      Plowman, B. J.; Jones, L. A.; Bhargava, S. K. Chem. Commun. 2015, 51, 4331.  doi: 10.1039/C4CC06638C

    17. [17]

      Xu, M.; Sui, Y.; Xiao, G.; Yang, X.; Wei, Y.; Zou, B. Nanoscale 2017, 9, 2514.  doi: 10.1039/C6NR08518K

    18. [18]

      Wang, Z.; Ning, S.; Liu, P.; Ding, Y.; Hirata, A.; Fujita, T.; Chen, M. Adv. Mater. 2017, 29, 1703601.  doi: 10.1002/adma.201703601

    19. [19]

      He, F.; Qiao, Z.; Qin, X.; Chao, L.; Tan, Y.; Xie, Q.; Yao, S. Sens. Actuators B:Chem. 2019, 296, 126679.  doi: 10.1016/j.snb.2019.126679

    20. [20]

      Liu, J.; Cao, L.; Huang, W.; Li, Z. ACS Appl. Mater. Inter. 2011, 3, 3552.  doi: 10.1021/am200782x

    21. [21]

      Plowman, B. J.; O'Mullane, A. P.; Selvakannan, P. R.; Bhargava, S. K. Chem. Commun. 2010, 46, 9182.  doi: 10.1039/c0cc03696j

    22. [22]

      Qiu, H.; Tang, T.; Asif, M.; Huang, X.; Hou, Y. Adv. Funct. Mater. 2019, 29, 1808468.  doi: 10.1002/adfm.201808468

    23. [23]

      Mattarozzi, L.; Cattarin, S.; Comisso, N.; Guerriero, P.; Musiani, M.; Verlato, E. Electrochim. Acta 2016, 198, 296.  doi: 10.1016/j.electacta.2016.03.084

    24. [24]

      Li, R.; Mao, H.; Zhang, J.; Huang, T.; Yu, A. J. Power Sources 2013, 241, 660.  doi: 10.1016/j.jpowsour.2013.05.032

    25. [25]

      Kottakkat, T.; Klingan, K.; Jiang, S.; Jovanov, Z. P.; Davies, V. H.; El-Nagar, G. A. M.; Dau, H.; Roth, C. ACS Appl. Mater. Inter. 2019, 11, 14734.  doi: 10.1021/acsami.8b22071

    26. [26]

      Yuan, W.; Zhang, J.; Shen, P. K.; Li, C. M.; Jiang, S. P. Electrochim. Acta 2016, 190, 817.  doi: 10.1016/j.electacta.2015.12.152

    27. [27]

      Pilapil, B. K.; van Drunen, J.; Makonnen, Y.; Beauchemin, D. Jerkiewicz, G.; Gates, B. D. Adv. Funct. Mater. 2017, 27, 1703171.  doi: 10.1002/adfm.201703171

    28. [28]

      Xi, Z.; Lv, H.; Erdosy, D. P.; Su, D.; Li, Q.; Yu, C.; Li, J.; Sun, S. Nanoscale 2017, 9, 7745.  doi: 10.1039/C7NR02711G

    29. [29]

      Wang, C.; van der Vliet, D.; More, K. L.; Zaluzec, N. J.; Peng, S.; Sun, S.; Daimon, H.; Wang, G.; Greeley, J.; Pearson, J.; Paulikas, A. P.; Karapetrov, G.; Strmcnik, D.; Markovic, N. M.; Stamenkovic, V. R. Nano Lett. 2011, 11, 919.  doi: 10.1021/nl102369k

    30. [30]

      Al Amri, Z.; Mercer, M. P.; Vasiljevic, N. Electrochim. Acta 2016, 210, 520.  doi: 10.1016/j.electacta.2016.05.161

    31. [31]

      You, H.; Zhang, F.; Liu, Z.; Fang, J. ACS Catal. 2014, 4, 2829.  doi: 10.1021/cs500390s

    32. [32]

      Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C.-K. ACS Nano 2014, 8, 7239.  doi: 10.1021/nn502259g

    33. [33]

      Wang, X.; Orikasa, Y.; Uchimoto, Y. ACS Catal. 2016, 6, 4195.  doi: 10.1021/acscatal.6b00497

    34. [34]

      Saleem, F.; Xu, B.; Ni, B.; Liu, H.; Nosheen, F.; Li, H.; Wang, X. Adv. Mater. 2015, 27, 2013.  doi: 10.1002/adma.201405319

    35. [35]

      Ramani, S.; Sarkar, S.; Vemuri, V.; Peter, S. C. J. Mater. Chem. A 2017, 5, 11572.  doi: 10.1039/C6TA06339J

    36. [36]

      Xu, H.; Yan, B.; Li, S.; Wang, J.; Wang, C.; Guo, J.; Du, Y. Chem. Eng. J. 2018, 334, 2638.  doi: 10.1016/j.cej.2017.10.175

    37. [37]

      Huang, Y.; Zhao, T.; Zeng, L.; Tan, P.; Xu, J. Electrochim. Acta 2016, 190, 956.  doi: 10.1016/j.electacta.2015.12.223

    38. [38]

      Li, D.; Meng, F.; Wang, H.; Jiang, X.; Zhu, Y. Electrochim. Acta 2016, 190, 852.  doi: 10.1016/j.electacta.2016.01.001

    39. [39]

      Zhang, S.; Shao, Y.; Yin, G.; Lin, Y. Angew. Chem., Int. Ed. 2010, 49, 2211.  doi: 10.1002/anie.200906987

    40. [40]

      Wang, R.; Liu, J.; Liu, P.; Bi, X.; Yan, X.; Wang, W.; Ge, X.; Chen, M.; Ding, Y. Chem. Sci. 2014, 5, 403.  doi: 10.1039/C3SC52792A

    41. [41]

      Kang, Y.; Qi, L.; Li, M.; Diaz, R. E.; Su, D.; Adzic, R. R.; Stach, E.; Li, J.; Murray, C. B. J. Am. Chem. Soc. 2012, 6, 2818.

    42. [42]

      Fu, G.-T.; Xia, B.-Y.; Ma, R.-G.; Chen, Y.; Tang, Y.-W.; Lee, J.-M. Nano Energy 2015, 12, 824.  doi: 10.1016/j.nanoen.2015.01.041

    43. [43]

      Choi, M.; Ahn, C.-Y.; Lee, H.; Kim, J. K.; Oh, S.-H.; Hwang, W.; Yang, S.; Kim, J.; Kim, O.-H.; Choi, I.; Sung, Y.-E.; Cho, Y.-H.; Rhee, C. K.; Shin, W. Appl. Catal. B:Environ. 2019, 253, 187.  doi: 10.1016/j.apcatb.2019.04.059

    44. [44]

      Tao, X.; Li, L.; Qi, X.; Wei, Z. Acta Chim. Sinica 2017, 75, 237.  doi: 10.11862/CJIC.2017.042

    45. [45]

      Guo, J. W.; Zhao, T. S.; Prabhuram, J.; Chen, R.; Wong, C. W. J. Power Sources 2006, 156, 345  doi: 10.1016/j.jpowsour.2005.05.093

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    15. [15]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    16. [16]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

Metrics
  • PDF Downloads(7)
  • Abstract views(1169)
  • HTML views(213)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return