Citation: Wang Zhitao, Li Hui, Yan Shichen, Fang Qianrong. Synthesis of a Two-dimensional Covalent Organic Framework with the Ability of Conducting Proton along Skeleton[J]. Acta Chimica Sinica, ;2020, 78(1): 63-68. doi: 10.6023/A19110397 shu

Synthesis of a Two-dimensional Covalent Organic Framework with the Ability of Conducting Proton along Skeleton

  • Corresponding author: Fang Qianrong, qrfang@jlu.edu.cn
  • Received Date: 7 November 2019
    Available Online: 10 January 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21571079)the National Natural Science Foundation of China 21571079

Figures(10)

  • Nitrogen heterocyclic compound like imidazole and triazole are often loaded in porous material for proton conduction. Inspired by this, we employ 5, 5'-diamino-3, 3'-bis(1H-1, 2, 4-triazole) (BTDA) containing triazole fragments in the structure as the construction unit to react with 2, 4, 6-triformylphloroglucinol (TFP) through Schiff-base condensation reaction to synthesize a novel two-dimensional covalent organic framework named TFP-BTDA-COF. The theoretical results were simulated using the Accelrys Material Studios 7.0 software package and compared with the powder X-ray diffraction (PXRD) test data to confirm the crystal structure of TFP-BTDA-COF. The porosity and pore structure of TFP-BTDA-COF were characterized by N2 adsorption-desorption at 77 K. The condensation reaction was confirmed by Fourier transform infrared spectroscopy (FTIR). Due to the π-π accumulation of the 2D-COF, the N-H bond of the triazole in BTDA connecting unit is periodically and regularly arranged on each layer of the COF to form an ordered array. Under certain humidity conditions, the protons can be transmitted along the array in the one-dimensional pore channel by the intermediary of water molecules. Therefore, the TFP-BTDA-COF has the ability to conduct proton through the skeleton. The proton conductivity of TFP-BTDA-COF is tested by the AC impedance method. The results show that the proton conductivity of the material is gradually enhanced with the increase of the ambient humidity, and the maximum value is 1.4×10-3 S·cm-1 at 98% relative humidity. The PXRD of TFP-BTDA-COF in boiling water for 2 h and after 12 h AC impedance test were compared with the original experimental value to evaluate its tolerance under the working conditions of the proton membrane fuel cell. The PXRD diffraction peak intensity did not change obviously compared with that of the original experimental value. The thermogravimetric analysis results show that the thermal stability of TFP-BTDA-COF can reach high to 400℃. The above evidence proves that it has the potential to be used in proton membrane fuel cells.
  • 加载中
    1. [1]

      Jacobson, M. Z.; Colella, W. G.; Golden, D. M. Science 2005, 308, 1901.  doi: 10.1126/science.1109157

    2. [2]

      Wang, Y.; Chen, K.; Mishler, J.; Cho, S. C.; Adroher, X. C. Appl. Energy 2011, 88, 981.  doi: 10.1016/j.apenergy.2010.09.030

    3. [3]

      He, X.-Y.; Gang, M.-Y.; He, G.-W.; Yin, Y.-H.; Cao, L.; Wu, H.; Jiang, Z.-Y. Chin. J. Chem. 2017, 35, 673.  doi: 10.1002/cjoc.201600577

    4. [4]

      Chen, X.; Yan, H.-J.; Xia, D.-G. Acta Chim. Sinica 2017, 75, 189.  doi: 10.3969/j.issn.0253-2409.2017.02.008
       

    5. [5]

      Cui, L.-R.; Zhang, J.; Sun, Y.-Y.; Lu, S.-F.; Xiang, Y. Acta Chim. Sinica 2019, 77, 47.  doi: 10.7503/cjcu20180421
       

    6. [6]

      Zhong, G.-Y.; Wang, H.-J.; Yu, H.; Peng, F. Acta Chim. Sinica 2017, 75, 943.
       

    7. [7]

      Zhang, H.-W.; Shen, P.-K. Chem. Rev. 2012, 112, 2780.  doi: 10.1021/cr200035s

    8. [8]

      Mauritz, K. A.; Moore, R. B. Chem. Rev. 2004, 104, 4535.  doi: 10.1021/cr0207123

    9. [9]

      Nasef, M. M. Chem. Rev. 2014, 114, 12278.  doi: 10.1021/cr4005499

    10. [10]

      Shimizu, G. K. H.; Taylor, J. M.; Kim, S. Science 2013, 341, 354.  doi: 10.1126/science.1239872

    11. [11]

      Yoon, M.; Suh, K.; Natarajan, S.; Kim, K. Angew. Chem., Int. Ed. 2013, 52, 2688.  doi: 10.1002/anie.201206410

    12. [12]

      Yamada, T.; Otsubo, K.; Makiura, R.; Kitagawa, H. Chem. Soc. Rev. 2013, 42, 6655.  doi: 10.1039/c3cs60028a

    13. [13]

      Ramaswamy, P.; Wong, N. E.; Shimizu, G. K. H. Chem. Soc. Rev. 2014, 43, 5913.  doi: 10.1039/C4CS00093E

    14. [14]

      Matoga, D.; Oszajca, M.; Molenda, M. Chem. Commun. 2015, 51, 7637.  doi: 10.1039/C5CC01789K

    15. [15]

      Tang, Q.; Liu, Y.-W.; Liu, S.-X.; He, D.-F.; Miao, J.; Wang, X.-Q.; Yang, G.-C. J. Am. Chem. Soc. 2014, 136, 12444.  doi: 10.1021/ja5069855

    16. [16]

      Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Science 2005, 310, 1166.  doi: 10.1126/science.1120411

    17. [17]

      Ding, S.-Y.; Wang, W. Chem. Soc. Rev. 2013, 42, 548.  doi: 10.1039/C2CS35072F

    18. [18]

      Waller, P. J.; Gándara, F.; Yaghi, O. M. Acc. Chem. Res. 2015, 48, 3053.  doi: 10.1021/acs.accounts.5b00369

    19. [19]

      Chen, Q.-D.; Tang, J.-J.; Fang, Q.-R. Chem. J. Chin. Univ. 2018, 39, 2357.  doi: 10.7503/cjcu20180190

    20. [20]

      Zheng, C.-N.; Zhu, J.-H.; Yang, C.-Q.; Lu, C.-B.; Chen, Z.-Y.; Zhuang, X.-D. Sci. China Chem. 2019, 62, 1145.  doi: 10.1007/s11426-019-9477-y

    21. [21]

      Yuan, F.-Y.; Tan, J.; Guo, J. Sci. China Chem. 2018, 61, 143.  doi: 10.1007/s11426-017-9162-3

    22. [22]

      Huang, N.; Chen, X.; Krishna, R.; Jiang, D.-L. Angew. Chem., Int. Ed. 2015, 54, 2986.  doi: 10.1002/anie.201411262

    23. [23]

      Dogru, M.; Handloser, M.; Auras, F.; Kunz, T.; Medina, D.; Hartschuh, A.; Knochei, P.; Bein, T. Angew. Chem., Int. Ed. 2013, 52, 2920.  doi: 10.1002/anie.201208514

    24. [24]

      Cai, P.-W.; Peng, X.-X.; Huang, J.-H.; Jia, J.-C.; Hu, X.; Wen, Z.-H. Sci. China Chem. 2019, 62, 385.  doi: 10.1007/s11426-018-9395-1

    25. [25]

      Pang, C.-M.; Luo, S.-H.; Hao, Z.-F.; Gao, J.; Huang, Z.-H.; Yu, J.-H.; Yu, S.-M.; Wang, Z.-Y. Chin. J. Org. Chem. 2018, 38, 2606.
       

    26. [26]

      Peng, Z.-K.; Ding, H.-M.; Chen, R.-F.; Gao, C.; Wang, C. Acta Chim. Sinica 2019, 77, 681.
       

    27. [27]

      Chandra, S.; Kundu, T.; Kandambeth, S.; Babarao, R.; Marathe, Y.; Kunjir, S. M.; Banerjee, R. J. Am. Chem. Soc. 2014, 136, 6570.  doi: 10.1021/ja502212v

    28. [28]

      Xu, H.; Tao, S.-S.; Jiang, D. L. Nat. Mater. 2016, 15, 722.  doi: 10.1038/nmat4611

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    7. [7]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    8. [8]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    9. [9]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    10. [10]

      Huan ZHANGJijiang WANGGuang FANLong TANGErlin YUEChao BAIXiao WANGYuqi ZHANG . A highly stable cadmium(Ⅱ) metal-organic framework for detecting tetracycline and p-nitrophenol. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 646-654. doi: 10.11862/CJIC.20230291

    11. [11]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    12. [12]

      Xiaoxia WANGYa'nan GUOFeng SUChun HANLong SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478

    13. [13]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    14. [14]

      Kaimin WANGXiong GUNa DENGHongmei YUYanqin YEYulu MA . Synthesis, structure, fluorescence properties, and Hirshfeld surface analysis of three Zn(Ⅱ)/Cu(Ⅱ) complexes based on 5-(dimethylamino) isophthalic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1397-1408. doi: 10.11862/CJIC.20240009

    15. [15]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    16. [16]

      Shuyan ZHAO . Field-induced Co single-ion magnet with pentagonal bipyramidal configuration. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1583-1591. doi: 10.11862/CJIC.20240231

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    19. [19]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    20. [20]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

Metrics
  • PDF Downloads(41)
  • Abstract views(1776)
  • HTML views(434)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return