Citation: Yu Zhe, Zhang Jianjun, Liu Tingting, Tang Ben, Yang Xiaoyan, Zhou Xinhong, Cui Guanglei. Research Progress and Perspectives of Localized High-concentration Electrolytes for Secondary Batteries[J]. Acta Chimica Sinica, ;2020, 78(2): 114-124. doi: 10.6023/A19100385 shu

Research Progress and Perspectives of Localized High-concentration Electrolytes for Secondary Batteries

  • Corresponding author: Cui Guanglei, cuigl@qibebt.ac.cn
  • These authors contributed equally to this work.
  • Received Date: 25 October 2019
    Available Online: 20 February 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 51703236, 51625204)the National Natural Science Foundation of China 51625204the National Natural Science Foundation of China 51703236

Figures(9)

  • The electrolyte, which is an important medium of ion conduction for secondary batteries, plays a crucial role in improving the cycling performance and safety performance of secondary batteries. Localized high-concentration electrolytes, which are formed by adding "diluent" into high-concentration electrolyte, not only reserve the outstanding properties of high-concentration electrolytes but also possess low viscosity, excellent wettability and low cost, promising broad application prospect. Localized high-concentration electrolytes have already played a part in flame-retardant lithium battery, high-voltage lithium battery, low-temperature lithium battery, lithium sulfur battery and sodium battery. Herein, this paper mainly reviews the types and preparation of localized high-concentration electrolytes and their functional mechanism and research status in various secondary batteries. We discuss the challenges and future development of localized high-concentration electrolytes and have the outlook at the end of the paper.
  • 加载中
    1. [1]

      Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243.  doi: 10.1039/c1ee01598b

    2. [2]

      Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.  doi: 10.1021/cm901452z

    3. [3]

      Goodenough, J. B.; Park, K.-S. J. Am. Chem. Soc. 2013, 135, 1167.  doi: 10.1021/ja3091438

    4. [4]

      Xu, K. Chem. Rev. 2004, 104, 4303.  doi: 10.1021/cr030203g

    5. [5]

      He, Q.; Zhang, C.; Li, X.; Wang, X.; Mu, P.; Jiang, J. X. Acta Chim. Sinica 2018, 76, 202(in Chinese).
       

    6. [6]

      Wang, C. Q.; Qiu, F. L.; Deng, H.; Zhang, X. Y.; He, P.; Zhou, H. S. Acta Chim. Sinica 2017, 75, 241(in Chinese).
       

    7. [7]

      Gu, X. Y.; Hong, Y.; Ai, G.; Wang, C. Y.; Mao, W. F. Acta Chim. Sinica 2018, 76, 644(in Chinese).
       

    8. [8]

      Kalhoff, J.; Eshetu, G. G.; Bresser, D.; Passerini, S. ChemSusChem 2015, 8, 2765.  doi: 10.1002/cssc.201501066

    9. [9]

      Lahiri, A.; Shah, N.; Dales, C. IEEE Spectrum 2018, 55, 34.

    10. [10]

      Li, J.; Tang, S.; Huang, J.; Tao, X.; Zhou, Y.; Li, D. New Chem. Mater. 2012, 40, 6(in Chinese).  doi: 10.3969/j.issn.1006-3536.2012.10.003

    11. [11]

      Liu, X.; Yu, L. Battery 2004, 34, 449.

    12. [12]

      Gao, J.; Lowe, M. A.; Kiya, Y.; Abruña, H. D. J. Phys. Chem. C 2011, 115, 25132.  doi: 10.1021/jp207714c

    13. [13]

      Ahmad, S. Ionics 2009, 15, 309.  doi: 10.1007/s11581-008-0309-x

    14. [14]

      Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F. Mater. Horiz. 2016, 3, 487.  doi: 10.1039/C6MH00218H

    15. [15]

      Azov, V. A.; Egorova, K. S.; Seitkalieva, M. M.; Kashina, A. S.; Ananikov, V. P. Chem. Soc. Rev. 2018, 47, 1250.  doi: 10.1039/C7CS00547D

    16. [16]

      Borodin, O.; Vatamanu, J.; Ren, X. J. Am. Chem. Soc. 2018, 256, 1155.

    17. [17]

      Messaggi, F.; Ruggeri, I.; Genovese, D.; Zaccheroni, N.; Arbizzani, C.; Soavi, F. Electrochim. Acta 2017, 245, 288.

    18. [18]

      Suo, L.; Fang, Z.; Hu, Y.-S.; Chen, L. Chinese Phys. B 2016, 25, 21.

    19. [19]

      Suo, L.; Hu, Y.-S.; Li, H.; Armand, M.; Chen, L. Nat. Commun. 2013, 4, 1481.  doi: 10.1038/ncomms2513

    20. [20]

      Zeng, Z.; Murugesan, V.; Han, K. S.; Jiang, X.; Cao, Y.; Xiao, L.; Ai, X.; Yang, H.; Zhang, J.-G.; Sushko, M. L.; Liu, J. Nature Energy 2018, 3, 674.  doi: 10.1038/s41560-018-0196-y

    21. [21]

      Cao, R.; Mishra, K.; Li, X.; Qian, J.; Engelhard, M. H.; Bowden, M. E.; Han, K. S.; Mueller, K. T.; Henderson, W. A.; Zhang, J.-G. Nano Energy 2016, 30, 825.  doi: 10.1016/j.nanoen.2016.09.013

    22. [22]

      Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350, 938.  doi: 10.1126/science.aab1595

    23. [23]

      McOwen, D. W.; Seo, D. M.; Borodin, O.; Vatamanu, J.; Boyle, P. D.; Henderson, W. A. Energy Environ. Sci. 2014, 7, 416.  doi: 10.1039/C3EE42351D

    24. [24]

      Wang, J.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Nat. Commun. 2016, 7, 12032.  doi: 10.1038/ncomms12032

    25. [25]

      Fan, X. L.; Ji, X.; Han, F. D.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J. J.; Wang, C. S. Sci. Adv. 2018, 4, 10.

    26. [26]

      Peng, Z.; Zhao, N.; Zhang, Z.; Wan, H.; Lin, H.; Liu, M.; Shen, C.; He, H.; Guo, X.; Zhang, J.-G.; Wang, D. Nano Energy 2017, 39, 662.  doi: 10.1016/j.nanoen.2017.07.052

    27. [27]

      Wang, L. L.; Ma, J.; Wang, C.; Yu, X. R.; Liu, R.; Jiang, F.; Sun, X. W.; Du, A. B.; Zhou, X. H.; Cui, G. L. Adv. Sci. 2019, 6, 11.

    28. [28]

      Yoo, E.; Zhou, H. ACS Appl. Mater. Interfaces 2017, 9, 21307.  doi: 10.1021/acsami.7b05466

    29. [29]

      Deng, B. W.; Sun, D. M.; Wan, Q.; Wang, H.; Chen, T.; Li, X.; Qu, M. Z.; Peng, G. C. Acta Chim. Sinica 2018, 76, 259(in Chinese).
       

    30. [30]

      Yamada, Y.; Wang, J.; Ko, S.; Watanabe, E.; Yamada, A. Nature Energy 2019, 4, 269.

    31. [31]

      Yamada, Y.; Yamada, A. J. Electrochem. Soc. 2015, 162, A2406.  doi: 10.1149/2.0041514jes

    32. [32]

      Chen, S.; Zheng, J.; Yu, L.; Ren, X.; Engelhard, M. H.; Niu, C.; Lee, H.; Xu, W.; Xiao, J.; Liu, J.; Zhang, J.-G. Joule 2018, 2, 1548.  doi: 10.1016/j.joule.2018.05.002

    33. [33]

      Zheng, J.; Chen, S.; Zhao, W.; Song, J.; Engelhard, M. H.; Zhang, J.-G. ACS Energy Lett. 2018, 3, 315.  doi: 10.1021/acsenergylett.7b01213

    34. [34]

      Xia, L.; Yu, L. P.; Hu, D.; George, C. Z. Acta Chim. Sinica 2017, 75, 1183(in Chinese).
       

    35. [35]

      Dagger, T.; Meier, V.; Hildebrand, S.; Brueggemann, D.; Winter, M.; Schappacher, F. M. Energy Technol. 2018, 6, 2001.  doi: 10.1002/ente.201800131

    36. [36]

      Wang, J.; Lin, F.; Jia, H.; Yang, J.; Monroe, C. W.; NuLi, Y. Angew. Chem. Int. Ed. 2014, 53, 10099.  doi: 10.1002/anie.201405157

    37. [37]

      Wang, Q.; Jiang, L.; Yu, Y.; Sun, J. Nano Energy 2019, 55, 93.  doi: 10.1016/j.nanoen.2018.10.035

    38. [38]

      Yang, H.; Guo, C.; Chen, J.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. Angew. Chem. Int. Ed. 2019, 58, 791.  doi: 10.1002/anie.201811291

    39. [39]

      Yang, H.; Li, Q.; Guo, C.; Naveed, A.; Yang, J.; Nuli, Y.; Wang, J. Chem Commun (Camb) 2018, 54, 4132.  doi: 10.1039/C7CC09942H

    40. [40]

      Ye, T.; Li, D.; Liu, H.; She, X.; Xia, Y.; Zhang, S.; Zhang, H.; Yang, D. Macromolecules 2018, 51, 9360.  doi: 10.1021/acs.macromol.8b01955

    41. [41]

      Zheng, J.; Ji, G.; Fan, X.; Chen, J.; Li, Q.; Wang, H.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. Adv. Energy Mater. 2019, 9, 1803774.  doi: 10.1002/aenm.201803774

    42. [42]

      Jia, H.; Zou, L.; Gao, P.; Cao, X.; Zhao, W.; He, Y.; Engelhard, M. H.; Burton, S. D.; Wang, H.; Ren, X.; Li, Q.; Yi, R.; Zhang, X.; Wang, C.; Xu, Z.; Li, X.; Zhang, J.-G.; Xu, W. Adv. Energy Mater. 2019, 9, 1900784.  doi: 10.1002/aenm.201900784

    43. [43]

      Du, J.; Lin, N.; Qian, Y. T. Acta Chim. Sinica 2017, 75, 147(in Chinese).  doi: 10.3969/j.issn.0253-2409.2017.02.003
       

    44. [44]

      Chen, S.; Zheng, J.; Mei, D.; Han, K. S.; Engelhard, M. H.; Zhao, W.; Xu, W.; Liu, J.; Zhang, J. G. Adv. Mater. 2018, 30, 1706102.  doi: 10.1002/adma.201706102

    45. [45]

      Ren, X.; Chen, S.; Lee, H.; Mei, D.; Engelhard, M. H.; Burton, S. D.; Zhao, W.; Zheng, J.; Li, Q.; Ding, M. S.; Schroeder, M.; Alvarado, J.; Xu, K.; Meng, Y. S.; Liu, J.; Zhang, J.-G.; Xu, W. Chem 2018, 4, 1877.  doi: 10.1016/j.chempr.2018.05.002

    46. [46]

      Ma, G.; Wang, L.; He, X.; Zhang, J.; Chen, H.; Xu, W.; Ding, Y. Adv. Energy Mater. 2018, 1, 5446.

    47. [47]

      Ren, X.; Zou, L.; Cao, X.; Engelhard, M. H.; Liu, W.; Burton, S. D.; Lee, H.; Niu, C.; Matthews, B. E.; Zhu, Z.; Wang, C.; Arey, B. W.; Xiao, J.; Liu, J.; Zhang, J.-G.; Xu, W. Joule 2019, 3, 1.  doi: 10.1016/j.joule.2018.12.022

    48. [48]

      Dong, X.; Lin, Y.; Li, P.; Ma, Y.; Huang, J.; Bin, D.; Wang, Y.; Qi, Y.; Xia, Y. Angew. Chem. Int. Ed. 2019, 58, 5623.  doi: 10.1002/anie.201900266

    49. [49]

      Huang, J.; Sun, Y.; Wang, Y.; Zhang, Q. Acta Chim. Sinica 2017, 75, 173(in Chinese).  doi: 10.7503/cjcu20160462
       

    50. [50]

      Chen, K. F.; Xue, D. F. Chin. J. Chem. 2017, 35, 861.  doi: 10.1002/cjoc.201600785

    51. [51]

      Li, W. F.; Ma, Q.; Zheng, Z. Z.; Zhang, Y. G. Acta Chim. Sinica 2017, 75, 225(in Chinese).  doi: 10.7503/cjcu20160584
       

    52. [52]

      He, F.; Wu, X.; Qian, J.; Cao, Y.; Yang, H.; Ai, X.; Xia, D. J. Mater. Chem. A 2018, 6, 23396.  doi: 10.1039/C8TA08159J

    53. [53]

      Manthiram, A.; Fu, Y.; Chung, S.-H.; Zu, C.; Su, Y.-S. Chem. Rev. 2014, 114, 11751.  doi: 10.1021/cr500062v

    54. [54]

      Manthiram, A.; Fu, Y.; Su, Y.-S. Acc. Chem. Res. 2013, 46, 1125.  doi: 10.1021/ar300179v

    55. [55]

      Conder, J.; Bouchet, R.; Trabesinger, S.; Marino, C.; Gubler, L.; Villevieille, C. Nature Energy 2017, 2, 17069.  doi: 10.1038/nenergy.2017.69

    56. [56]

      Li, X.; Banis, M.; Lushington, A.; Yang, X.; Sun, Q.; Zhao, Y.; Liu, C.; Li, Q.; Wang, B.; Xiao, W.; Wang, C.; Li, M.; Liang, J.; Li, R.; Hu, Y.; Goncharova, L.; Zhang, H.; Sham, T. K.; Sun, X. Nat. Commun. 2018, 9, 4509.  doi: 10.1038/s41467-018-06877-9

    57. [57]

      Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969.  doi: 10.1149/1.1806394

    58. [58]

      Cuisinier, M.; Cabelguen, P. E.; Adams, B. D.; Garsuch, A.; Balasubramanian, M.; Nazar, L. F. Energy Environ. Sci. 2014, 7, 2967.

    59. [59]

      Moon, H.; Mandai, T.; Tatara, R.; Ueno, K.; Yamazaki, A.; Yoshida, K.; Seki, S.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2015, 119, 3957.  doi: 10.1021/jp5128578

    60. [60]

      Jiang, J.; Gao, D.-S.; Li, Z.-H.; Su, G.-Y.; Wang, C.-W.; Liu, L.; Ding, Y.-H. Chem. J. Chin. Univ. 2006, 27, 1319(in Chinese).  doi: 10.3321/j.issn:0251-0790.2006.07.021

    61. [61]

      Jing, J.; Guangyao, S. U. Battery 2005, 35, 474.

    62. [62]

      Taige, M. A.; Hilbert, D.; Schubert, T. J. S. Zeitschrift für Physikalische Chemie 2012, 226, 129.  doi: 10.1524/zpch.2012.0161

    63. [63]

      Lewandowski, A.; Swiderska-Mocek, A. J. Power Sources 2009, 194, 601.  doi: 10.1016/j.jpowsour.2009.06.089

    64. [64]

      Qiu, H.; Zhao, J.; Zhou, X.; Cui, G. Acta Chim. Sinica 2018, 76, 749(in Chinese).  doi: 10.7503/cjcu20170463
       

    65. [65]

      Dokko, K.; Tachikawa, N.; Yamauchi, K.; Tsuchiya, M.; Yamazaki, A.; Takashima, E.; Park, J.-W.; Ueno, K.; Seki, S.; Serizawa, N.; Watanabe, M. J. Electrochem. Soc. 2013, 160, A1304.  doi: 10.1149/2.111308jes

    66. [66]

      Ueno, K.; Murai, J.; Ikeda, K.; Tsuzuki, S.; Tsuchiya, M.; Tatara, R.; Mandai, T.; Umebayashi, Y.; Dokko, K.; Watanabe, M. J. Phys. Chem. C 2015, 120, 15792.

    67. [67]

      Kim, S.-W.; Seo, D.-H.; Ma, X.; Ceder, G.; Kang, K. Adv. Energy Mater. 2012, 2, 710.  doi: 10.1002/aenm.201200026

    68. [68]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947.  doi: 10.1002/adfm.201200691

    69. [69]

      Xiang, X.; Lu, Y.; Chen, J. Acta Chim. Sinica 2017, 75, 154(in Chinese).
       

    70. [70]

      Zou, W.; Fan, C.; Li, J. Z. Chin. J. Chem. 2017, 35, 79.  doi: 10.1002/cjoc.201600634

    71. [71]

      Qu, L. P.; Ren, T.; Wang, N.; Shi, Y. L.; Zhuang, Q. C. Acta Chim. Sinica 2019, 77, 634(in Chinese).
       

    72. [72]

      Doi, T.; Shimizu, Y.; Hashinokuchi, M.; Inaba, M. J. Electrochem. Soc. 2017, 164, A6412.  doi: 10.1149/2.0611701jes

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    10. [10]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    19. [19]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    20. [20]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

Metrics
  • PDF Downloads(167)
  • Abstract views(3407)
  • HTML views(1310)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return