Citation: Wang Zhiqiang, Bai Meidan, Zhang Ming, Zhang Zhiqiang, Feng Xun, Zheng Caijun. Synthesis and Properties of Two Novel Thermally Activated Delayed Fluorescence Materials with 1, 3, 5-Tribenzoylbenzene as Electron-Acceptor[J]. Acta Chimica Sinica, ;2020, 78(2): 140-146. doi: 10.6023/A19100372 shu

Synthesis and Properties of Two Novel Thermally Activated Delayed Fluorescence Materials with 1, 3, 5-Tribenzoylbenzene as Electron-Acceptor

  • Corresponding author: Wang Zhiqiang, wzq197811@lynu.edu.cn Zhang Zhiqiang,  Zheng Caijun, zhengcaijun@uestc.edu.cn
  • Received Date: 16 October 2019
    Available Online: 25 February 2019

    Fund Project: the Henan Natural Science Foundation 182300410230Project supported by the National Natural Science Foundation of China (No. 51773029) and the Henan Natural Science Foundation (No. 182300410230)the National Natural Science Foundation of China 51773029

Figures(9)

  • Two thermally activated delayed fluorescence (TADF) materials TBP-DmCz and TBP-TmCz were successfully synthesized using 1, 3, 5-tribenzoylbenzene (TBP) as electron-acceptor, 1, 8-dimethylcarbazole (DmCz) and 1, 3, 6, 8-tetra-methylcarbazole (TmCz) as electron-donor, respectively. Thermal gravimetric analysis show that the thermal decomposition temperatures (Td) are 479℃ for TBP-DmCz and 484℃ for TBP-TmCz and no glass transition was found for both materials during the differential scanning calorimetry investigations. The highest occupied molecular orbitals (HOMO) are confined on the carbazole unit, while the lowest unoccupied molecular orbitals (LUMO) are located on the 1, 3, 5-tribenzoylbenzene unit, and there is almost no overlap between HOMO and LUMO, which is the typical molecular orbital character of TADF materials. Meanwhile, TBP-DmCz and TBP-TmCz possess degenerated HOMO and LUMO, which would promote the radiative transitions as the transitions could take place from all degenerated LUMOs to HOMOs. The HOMO level of TBP-TmCz is obviously higher than that of TBP-DmCz due to increasing the number of methyl groups at the electron-donor carbazole, and the LUMO levels of TBP-DmCz and TBP-TmCz only show a small difference because these materials have the same electron-acceptor 1, 3, 5-tribenzoylbenzene. In toluene solution, these materials have very similar absorption spectra and exhibit absorption bands assigned to intramolecular charge-transfer transition. The spectral peaks are located at 488 nm for TBP-DmCz and 502 nm for TBP-TmCz, respectively, in toluene solution at room temperature. According to the fluorescence and phosphorescence spectra of these materials in 1, 3-bis(N-carbazolyl)benzene (mCP) film at 77 K, the energy gaps between the lowest singlet and triplet (ΔEST) of TBP-DmCz and TBP-TmCz are calculated to be 0.05 and 0.01 eV, respectively. The fluorescence decay behaviors at different temperatures (100, 200 and 300 K) proved that emissions of TBP-DmCz and TBP-TmCz contain TADF component. The electroluminescence devices with TBP-DmCz and TBP-TmCz as the emitters show high efficiency and low efficiency roll-off. The maximum external quantum efficiencies of devices based on TBP-DmCz and TBP-TmCz are 13.6% and 18.3%, respectively.
  • 加载中
    1. [1]

      Sun, Y. R.; Giebink, N. C.; Kanno, H.; Ma, B. W.; Thompson, M. E.; Forrest, S. R. Nature 2006, 440, 908.

    2. [2]

      Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lussem, B.; Leo, K. Nature 2009, 459, 234.

    3. [3]

      Helander, M. G.; Wang, Z. B.; Qiu, J.; Greiner, M. T.; Puzzo, D. P.; Liu, Z. W. Science 2011, 332, 944.

    4. [4]

      Han, T.-H.; Lee, Y.; Choi, M.-R.; Woo, S.-H.; Hong, B. H.; Ahn, J.-H.; Lee, T.-W. Nat. Photonics 2012, 459, 105.

    5. [5]

      Sasabe, H.; Kido, J. J. Mater. Chem. C 2013, 1, 1699.

    6. [6]

      Chen, S.; Dai, J.; Zhou, K.; Luo, Y.; Su, S.; Pu, X.; Huang, Y.; Lu, Z. Acta Chim. Sinica 2017, 75, 367.
       

    7. [7]

      Qiu, Z.; Tan, J.; Cai, N.; Wang, K.; Ji, S.; Huo, Y. Chin. J. Org. Chem. 2019, 39, 679.

    8. [8]

      He, X.; Xiao, Y.; Yuan, X.; Ye, S.; Jiang, H. Chin. J. Org. Chem. 2019, 39, 761.

    9. [9]

      Wang, F.; Cao, X.; Mei, L.; Zhang, X.; Hu, J.; Tao, Y. Chin. J. Chem. 2018, 36, 241.

    10. [10]

      Zhou, W.; Liu, Z.; Wang, Z.; Hu, S.; Liang, A. Chin. J. Org. Chem. 2019, 39, 1214.
       

    11. [11]

      Xu, H.; Chen, R.; Sun, Q.; Huang, W.; Liu, X. Chem. Soc. Rev. 2014, 43, 3259.

    12. [12]

      Volz, D.; Wallesch, M.; Fléchon, C.; Danz, M.; Verma, A.; Navarro, J. M.; Zink, D. M.; Bräse, S.; Baumann, T. Green Chem. 2015, 17, 1988.

    13. [13]

      Chi, Y.; Tong, B.; Chou, P.-T. Coord. Chem. Rev. 2014, 281, 1.

    14. [14]

      Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Nature 2012, 492, 234.

    15. [15]

      Dias, F. B.; Bourdakos, K. N.; Jankus, V.; Moss, K. C.; Kamtekar, K. T.; Bhalla, V.; Santos, J.; Bryce, M. R.; Monkman, A. P. Adv. Mater. 2013, 25, 3707.

    16. [16]

      Zhang, D. D.; Duan, L. A.; Li, Y. L.; Zhang, D. Q.; Qiu, Y. J. Mater. Chem. C 2014, 2, 8191.

    17. [17]

      Wang, H.; Xie, L.; Peng, Q.; Meng, L.; Wang, Y.; Yi, Y.; Wang, P. Adv. Mater. 2014, 26, 5198.

    18. [18]

      Mei, L.; Hu, J.; Cao, X.; Wang, F.; Zheng, C.; Tao, Y.; Zhang, X.; Huang, W. Chem. Commun. 2015, 51, 13024.

    19. [19]

      Cai, X.; Li, X.; Xie, G.; He, Z.; Gao, K.; Liu, K.; Chen, D.; Cao, Y.; Su, S. J. Chem. Sci. 2016, 7, 4264.

    20. [20]

      Meng, L.; Wang, H.; Wei, X.; Liu, J.; Chen, Y.; Kong, X.; Lv, X.; Wang, P.; Wang, Y. ACS Appl. Mater. Interfaces 2016, 8, 20955.
       

    21. [21]

      Wang, K.; Zheng, C. J.; Liu, W.; Liang, K.; Shi, Y. Z.; Tao, S. L.; Lee, C. S.; Ou, X. M.; Zhang, X. H. Adv. Mater. 2017, 29, 1701476.

    22. [22]

      Lee, J.; Aizawa, N.; Yasuda, T. Chem. Mater. 2017, 29, 8012.
       

    23. [23]

      Shi, Y. Z.; Wang, K.; Li, X.; Dai, G. L.; Liu, W.; Ke, K.; Zhang, M.; Tao, S. L.; Zheng, C. J.; Ou, X. M.; Zhang, X. H. Angew. Chem., Int. Ed. 2018, 57, 9480.

    24. [24]

      Yu, L.; Wu, Z.; Xie, G.; Zeng, W.; Ma, D.; Yang, C. Chem. Sci. 2018, 9, 1385.
       

    25. [25]

      Yang, Z.; Mao, Z.; Xu, C.; Chen, X.; Zhao, J.; Yang, Z.; Zhang, Y.; Wu, W.; Jiao, S.; Liu, Y.; Aldred, M. P.; Chi, Z. Chem. Sci. 2019, 10, 8129.

    26. [26]

      Zhang, M.; Liu, W.; Zheng, C. J.; Wang, K.; Shi, Y. Z.; Li, X.; Lin, H.; Tao, S. L.; Zhang, X. H. Adv. Sci. 2019, 6, 1801938.

    27. [27]

      Rajamalli, P.; Senthilkumar, N.; Gandeepan, P.; Huang, P. Y.; Huang, M. J.; Ren-Wu, C. Z.; Yang, C. Y.; Chiu, M. J.; Chu, L. K.; Lin, H. W.; Cheng, C. H. J. Am. Chem. Soc. 2016, 138, 628.

    28. [28]

      Xie, Z.; Chen, C.; Xu, S.; Li, J.; Zhang, Y.; Liu, S.; Xu, J.; Chi, Z. Angew. Chem., Int. Ed. 2015, 54, 7181.

    29. [29]

      Nikolaenko, A. E.; Cass, M.; Bourcet, F.; Mohamad, D.; Roberts, M. Adv. Mater. 2015, 27, 7236.

    30. [30]

      Di, D.; Romanov, A. S.; Yang, L.; Richter, J. M.; Rivett, J. P. H.; Jones, S.; Thomas, T. H.; Jalebi, M. A.; Friend, R. H.; Linnolahti, M.; Bochmann, M.; Credgington, D. Science 2017, 356, 159.

    31. [31]

      Wang, Z.; Zheng, C.; Wang, W.; Xu, C.; Ji, B.; Zhang, X. Inorg. Chem. 2016, 55, 2157.

    32. [32]

      Wang, Z.; Sun, X.; Xu, C.; Ji, B. Front. Chem. 2019, DOI:10. 3389/fchem. 2019.00422  doi: 10.3389/fchem.2019.00422

    33. [33]

      Song, X.; Zhang, D.; Lu, Y.; Yin, C.; Duan, L. Adv. Mater. 2019, 31, 1901923.

    34. [34]

      Kretzschmar, A.; Patze, C.; Schwaebel, S. T.; Bunz, U. H. F. J. Org. Chem. 2015, 80, 9126.

    35. [35]

      Zhu, Y.; Zhang, Y.; Yao, B.; Wang, Y.; Zhang, Z.; Zhan, H.; Zhang, B.; Xie, Z.; Wang, Y.; Cheng, Y. Macromolecules 2016, 49, 4373.

    36. [36]

      Wang, Z.; Cai, J.; Zhang, M.; Zheng, C.; Ji, B. Acta Chim. Sinica 2019, 77, 263.
       

    37. [37]

      Yang, Z.; Mao, Z.; Xie, Z.; Zhang, Y.; Liu, S.; Zhao, J.; Xu, J.; Chi Z.; Aldred, M. P. Chem. Soc. Rev. 2017, 46, 915.

    38. [38]

      Huang, T.; Jiang, W.; Duan, L. J. Mater. Chem. C 2018, 6, 5577.

    39. [39]

      Godumala, M.; Choi, S.; Cho, M. J.; Choi, D. H. J. Mater. Chem. C 2019, 7, 2172.

    40. [40]

      Cao, X.; Zhang, D.; Zhang, S.; Tao, Y.; Huang, W. J. Mater. Chem. C 2017, 5, 7699.
       

    41. [41]

      Godumala, M.; Choi, S.; Cho, M. J.; Choi, D. H. J. Mater. Chem. C 2016, 4, 11355.
       

    42. [42]

      Cai, X.; Chen, D.; Gao, K.; Gan, L.; Yin, Q.; Qiao, Z.; Chen, Z.; Jiang, X.; Su, S.-J. Adv. Funct. Mater. 2017, 27, 1704927.

    43. [43]

      Bai, M.-D.; Zhang, M.; Wang, K.; Shi, Y.-Z.; Chen, J.-X.; Lin, H.; Tao, S.-L.; Zheng, C.-J.; Zhang, X.-H. Org. Electron. 2018, 62, 220.

  • 加载中
    1. [1]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    2. [2]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    5. [5]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    6. [6]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    7. [7]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    8. [8]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    9. [9]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Borong Yu Huijiao Zhang Xinyu Zhang Xiaoying Li Shuming Chen Zhangang Han . The Blue Elf in the Dark: Gradient Science Popularization Experiments on Chemiluminescence. University Chemistry, 2024, 39(9): 295-303. doi: 10.12461/PKU.DXHX202403107

    12. [12]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    13. [13]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    14. [14]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    15. [15]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    16. [16]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    17. [17]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    18. [18]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    19. [19]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    20. [20]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

Metrics
  • PDF Downloads(7)
  • Abstract views(571)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return