Citation: Guan Xiaolin, Li Zhifei, Wang Lin, Liu Meina, Wang Kailong, Yang Xueqin, Li Yali, Hu Lili, Zhao Xiaolong, Lai Shoujun, Lei Ziqiang. Preparation of AIE Polymer Dots (Pdots) Based on Poly(N-vinyl-2-pyrrolidone)-Eu(Ⅲ) Complex and Dual-color Live Cell Imaging[J]. Acta Chimica Sinica, ;2019, 77(12): 1268-1278. doi: 10.6023/A19090349 shu

Preparation of AIE Polymer Dots (Pdots) Based on Poly(N-vinyl-2-pyrrolidone)-Eu(Ⅲ) Complex and Dual-color Live Cell Imaging

  • Corresponding author: Guan Xiaolin, guanxiaolin@nwnu.edu.cn
  • Received Date: 27 September 2019
    Available Online: 20 December 2019

    Fund Project: the National Natural Science Foundation of China 21761032the National Natural Science Foundation of China 21965032the National Natural Science Foundation of China 51363019Project supported by the National Natural Science Foundation of China (Nos. 21965032, 21761032, 51363019) and the Key Laboratory of Ecological Environment Related Polymer Materials, Ministry of Education Open Fund (KF-18-05)the Key Laboratory of Ecological Environment Related Polymer Materials, Ministry of Education Open Fund KF-18-05

Figures(11)

  • In recent years, polymer dots (Pdots) have been developed as an excellent organic fluorescent nanoparticles due to its excellent optical properties, diverse structures, easy surface modification and good biocompatibility. So, they have important application potential in biological imaging, sensing and detection, drug delivery and therapeutic diagnosis. However, the fluorescence quenching of semiconducting Pdots with large conjugated structure due to aggregation-caused quenching (ACQ) effect limits its applications for bioimaging in aggregated states. The ACQ phenomenon of Pdots could been eliminated by introducing aggregation-induced emission (AIE)-active molecules in Pdots. In this paper, a kind of responsive AIE-active Pdots, which were composed of tetraphenylethylene (TPE) with blue fluorescent light emission and poly(N-vinyl-2-pyrrolidone)-Eu(Ⅲ) complex (PVP-Eu(Ⅲ)) with red fluorescent light emission, were constructed. Firstly, a TPE derivative initiator (TPE-tetraAZO) containing four arms was synthesized by using 4, 4'-azobis-(4-cyanovaleric acid) to modify TPE, and a multi-stimuli-responsive amphiphilic polymer of tetraphenylethene-graft-poly(N-vinyl-2-pyrrolidone) (TPE-tetraPVP) was then successfully synthesized by using TPE-tetraAZO as initiator. Finally, the complex TPE-tetraPVP-Eu(Ⅲ) with AIE characteristic and dual fluorescence was obtained through the coordination between TPE-tetraPVP and rare earth element Eu(Ⅲ). The amphiphilic 4-arm star polymer TPE-tetraPVP-Eu(Ⅲ) formed Pdots consisted of hydrophobic AIEgens TPE core and hydrophilic PVP shell by a self-assembling process. The morphology and particle size of Pdots were investigated by transmission electron microscope (TEM). Results showed that Pdots was a relatively uniform diameter around 20 nm and exhibited regular sphere morphology. The results of fluorescence experiments showed that TPE-tetraPVP-Eu(Ⅲ) Pdots had two emission bands centered at about 435 (blue) and 615 nm (red) with a wavelength difference of 180 nm, which were obtained under optimum excitation at 360 and 395 nm, respectively. Among them, the blue emission showed typical AIE property. Moreover, the lower critical solution temperature (LCST) of TPE-tetraPVP-Eu(Ⅲ) in aqueous solution was about 37℃, which was close to normal body temperature. Meanwhile, at different temperatures from 10 to 60℃, photoluminescence (PL) intensities of TPE-tetraPVP-Eu(Ⅲ) Pdots firstly decreased with increasing temperature from 10 to 36℃, and then increased with increasing temperature from 37 to 60℃. It was interesting that the fluorescent response of Pdots could be caused by the phase transfer of PVP. Besides, the PL intensity of Pdots in aqueous solution changed at different pH. Therefore, TPE-tetraPVP-Eu(Ⅲ) Pdots might be used as multi-functional and smart fluorescent sensors. Furthermore, the results of cellular imaging indicated the efficient cellular uptake and low cytotoxicity of Pdots in HeLa, HepG2 and A549 cells. And, the photoswitchable dual-emission could be easily realized in three cells by simply tuning the excitation wavelength. Thus, the non-conjugated Pdots is an ideal dual-color live cell imaging probe.
  • 加载中
    1. [1]

      Liu, Y. Y.; Stehlik, J.; Eichler, C.; Gullans, M. J.; Taylor, J. M.; Petta, J. R. Science 2015, 347, 285.  doi: 10.1126/science.aaa2501

    2. [2]

      Pietryga, J. M.; Park, Y. S.; Lim, J. H.; Fider, A. F.; Bae, W. K.; Brovelil, S. G. Chem. Rev. 2016, 116, 10513.  doi: 10.1021/acs.chemrev.6b00169

    3. [3]

      Sun, Q. H.; Li, Z.; Ma, N. Acta Chim. Sinica. 2018, 76, 43 (in Chinese).  doi: 10.11862/CJIC.2018.011
       

    4. [4]

      Xi, Z. F.; Yuan, F. L.; Wang, Z. F.; Li, S. H.; Fan, L. Z. Acta Chim. Sinica 2018, 76, 460 (in Chinese).
       

    5. [5]

      Xu, Y.; Zhao, Y.; Zhang, Y. J.; Cui, Z. F.; Wang, L. H.; Fan, C. H.; Gao, J. M.; Sun, Y. H. Acta Chim. Sinica 2018, 76, 393 (in Chinese).
       

    6. [6]

      Shao, Y. B.; Yue, J. L.; Sun, S.; Xia, H. Chinese J. Chem. 2017, 35, 73.  doi: 10.1002/cjoc.201600637

    7. [7]

      Huang, L.; Li, Z. C.; Huang, S. Q.; Peter, R.; Li, L. Acta Chim. Sinica 2017, 75, 300 (in Chinese).

    8. [8]

      Wegner, K. D.; Hildebrandt, N.Chem. Soc. Rev. 2015, 44, 4792.  doi: 10.1039/C4CS00532E

    9. [9]

      Song, Y. C.; Liu, J. X.; Shi, W.; Ma, H. M. Acta Chim. Sinica 2013, 71, 1607 (in Chinese).
       

    10. [10]

      Cai, P.; Jia, Y.; Feng, X.; Li, J.; Li, J. B. Chinese J. Chem. 2017, 35, 881.  doi: 10.1002/cjoc.201600840

    11. [11]

      Liu, H. Y.; Wu, P. J.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H. J. Am. Chem. Soc. 2015, 137, 10420.  doi: 10.1021/jacs.5b06710

    12. [12]

      Xiong, L. Q.; Cao, F. W.; Cao, X. M.; Guo, Y. X.; Zhang, Y. M.; Cai, X. Bioconjugate Chem. 2015, 5, 817.

    13. [13]

      Yu, J. B.; Rong, Y.; Kuo, C. T.; Hua, X.; Chiu, D. T. Anal. Chem. 2017, 1, 42.

    14. [14]

      Huang, Z. F.; Zhang, X. Q.; Zhang, X. Y.; Fu, C. K.; Wang, K.; Yuan, J. Y.; Tao, L.; Wei, Y. Polym. Chem. 2015, 6, 607.  doi: 10.1039/C4PY01421A

    15. [15]

      Birks, J. B. Photophysics of Aromatic Molecules, Wiley- Interscience, London, 1970.

    16. [16]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Chen, L.; Chen, H. Y.; Qiu, C. F.; Kwok, S. K.; Zhan, X. W.; Liu, Y.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 18, 1740.

    17. [17]

      Mei, J.; Leung, L. C.; Kwok, T. K.; Lam, W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    18. [18]

      Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Acta Chim. Sinica 2016, 74, 917 (in Chinese).
       

    19. [19]

      Wu, W. B.; Mao, D.; Hu, F.; Xu, S. D.; Chao, C.; Zhang, X. M.; Yuan, Y. Y.; Ding, D.; Kong, D. L.; Liu, B. Adv. Mater. 2017, 29, 1700548.  doi: 10.1002/adma.201700548

    20. [20]

      Lu, H. G.; Su, F. Y.; Mei, Q.; Tian, Y. Q.; Tian, W. J.; Johnson, R. H.; Meldrum, D. R. J. Mater. Chem. 2012, 22, 9890.  doi: 10.1039/c2jm30258f

    21. [21]

      Guan, X. L.; Meng, L.; Jin, Q. J.; Lu, B. C.; Chen, Y. B.; Li, Z. F.; Lai, S. J.; Lei, Z. Q. Macromol. Mater. Eng. 2018, 303, 1700553.  doi: 10.1002/mame.201700553

    22. [22]

      Li, K.; Qin, W.; Ding, D.; Tomczak, N. D.; Geng, J. L.; Liu, R. G.; Liu, J. Z.; Zhang, X. H.; Liu, H. G.; Liu, B.; Tang, B. Z. Sci. Rep. 2013, 3, 1150.  doi: 10.1038/srep01150

    23. [23]

      Zhang, Y.; Chen, Y. J.; Li, X.; Zhang, J. Z.; Chen, J. L.; Xu, B.; Fu, X. Q.; Tian, W. J. Polym. Chem. 2014, 5, 3824.  doi: 10.1039/C4PY00075G

    24. [24]

      Zhang, X.; Liu, M. Y.; Yang, B.; Zhang, X. Y.; Chi, Z.; Chi, Z. G.; Liu, S. W.; Xu, J.; Wei, Y. Polym. Chem. 2013, 4, 5060.  doi: 10.1039/c3py00860f

    25. [25]

      Liu, Y. Z.; Mao, L. C.; Yang, S. J.; Liu, M.; Huang, H. Y.; Wen, Y. Q.; Deng, F. J.; Li, Y. X.; Zhang, X. Y.; WEI, Y. Dyes Pigments 2018, 158, 79.  doi: 10.1016/j.dyepig.2018.05.032

    26. [26]

      Wu, J. T.; Zhang, J.; Deng, C.; Meng, F.; Cheng, R.; Zhong, Z. Y. ACS Appl. Mater. Interfaces 2017, 9, 3985.

    27. [27]

      Zhao, Y.; Shi, C.; Yang, X. D.; Shen, B.; Sun, Y. Q.; Chen, Y.; Xu, X. W.; Sun, H. C.; Yu, K.; Yang, B.; Lin, Q. ACS Nano 2016, 10, 5856.  doi: 10.1021/acsnano.6b00770

    28. [28]

      Guan, X. L.; Zhang, D. H.; Meng, L.; Zhang, Y.; Jia, T. M.; Wei, Q. B.; Lu, D. D.; Ma, H. C. Ind. Eng. Chem. Res. 2017, 56, 680.  doi: 10.1021/acs.iecr.6b03780

    29. [29]

      Sabbatini, L.; Malitesta, C.; De Giglio, E. J. Electron Spectrosc. Relat. Phenom. 1999, 100, 35.  doi: 10.1016/S0368-2048(99)00039-0

    30. [30]

      Wang, Y.; Jiang, H. L. Mater. Lett. 2007, 61, 2779.  doi: 10.1016/j.matlet.2006.10.055

    31. [31]

      Zhong, W. B.; Zeng, X. Y.; Chen, J.; Hong, Y. X.; Xiao, L. X.; Zhang, P. S. Polym. Chem. 2017, 8, 4849.  doi: 10.1039/C7PY00834A

    32. [32]

      Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. Nano Lett. 2006, 6, 662.  doi: 10.1021/nl052396o

    33. [33]

      Zhou, P.; Li, G. Y.; Shao, Z. Z.; Pan, X. Y.; Yu, T. Y. J. Phys. Chem. B 2001, 105, 12469.  doi: 10.1021/jp0125395

    34. [34]

      Guan, X. L.; Zhang, D. H.; Jia, T. M.; Zhang, Y.; Meng, L.; Jin, Q. J.; Ma, H. C.; Lu, D. D.; Lei, Z. Q. RSC Adv. 2016, 6, 107622.  doi: 10.1039/C6RA23380E

    35. [35]

      Kato, T.; Kawaguchi, A.; Nagata, K.; Hatanaka, k. Biochem. Biophys. Res. Commun. 2010, 394, 200.  doi: 10.1016/j.bbrc.2010.02.155

  • 加载中
    1. [1]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    2. [2]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    7. [7]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    8. [8]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    9. [9]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    13. [13]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    14. [14]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    15. [15]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    16. [16]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Jianye KangXinyu YangXuhao YangJiahui SunYuhang LiuShutao WangWenlong Song . Carbon dots-enhanced pH-responsive lubricating hydrogel based on reversible dynamic covalent bondings. Chinese Chemical Letters, 2024, 35(5): 109297-. doi: 10.1016/j.cclet.2023.109297

    19. [19]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    20. [20]

      Rui WangHe QiHaijiao ZhengQiong Jia . Light/pH dual-responsive magnetic metal-organic frameworks composites for phosphorylated peptide enrichment. Chinese Chemical Letters, 2024, 35(7): 109215-. doi: 10.1016/j.cclet.2023.109215

Metrics
  • PDF Downloads(15)
  • Abstract views(1376)
  • HTML views(229)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return