Citation: Guan Xiaolin, Li Zhifei, Wang Lin, Liu Meina, Wang Kailong, Yang Xueqin, Li Yali, Hu Lili, Zhao Xiaolong, Lai Shoujun, Lei Ziqiang. Preparation of AIE Polymer Dots (Pdots) Based on Poly(N-vinyl-2-pyrrolidone)-Eu(Ⅲ) Complex and Dual-color Live Cell Imaging[J]. Acta Chimica Sinica, ;2019, 77(12): 1268-1278. doi: 10.6023/A19090349 shu

Preparation of AIE Polymer Dots (Pdots) Based on Poly(N-vinyl-2-pyrrolidone)-Eu(Ⅲ) Complex and Dual-color Live Cell Imaging

  • Corresponding author: Guan Xiaolin, guanxiaolin@nwnu.edu.cn
  • Received Date: 27 September 2019
    Available Online: 20 December 2019

    Fund Project: the National Natural Science Foundation of China 21761032the National Natural Science Foundation of China 21965032the National Natural Science Foundation of China 51363019Project supported by the National Natural Science Foundation of China (Nos. 21965032, 21761032, 51363019) and the Key Laboratory of Ecological Environment Related Polymer Materials, Ministry of Education Open Fund (KF-18-05)the Key Laboratory of Ecological Environment Related Polymer Materials, Ministry of Education Open Fund KF-18-05

Figures(11)

  • In recent years, polymer dots (Pdots) have been developed as an excellent organic fluorescent nanoparticles due to its excellent optical properties, diverse structures, easy surface modification and good biocompatibility. So, they have important application potential in biological imaging, sensing and detection, drug delivery and therapeutic diagnosis. However, the fluorescence quenching of semiconducting Pdots with large conjugated structure due to aggregation-caused quenching (ACQ) effect limits its applications for bioimaging in aggregated states. The ACQ phenomenon of Pdots could been eliminated by introducing aggregation-induced emission (AIE)-active molecules in Pdots. In this paper, a kind of responsive AIE-active Pdots, which were composed of tetraphenylethylene (TPE) with blue fluorescent light emission and poly(N-vinyl-2-pyrrolidone)-Eu(Ⅲ) complex (PVP-Eu(Ⅲ)) with red fluorescent light emission, were constructed. Firstly, a TPE derivative initiator (TPE-tetraAZO) containing four arms was synthesized by using 4, 4'-azobis-(4-cyanovaleric acid) to modify TPE, and a multi-stimuli-responsive amphiphilic polymer of tetraphenylethene-graft-poly(N-vinyl-2-pyrrolidone) (TPE-tetraPVP) was then successfully synthesized by using TPE-tetraAZO as initiator. Finally, the complex TPE-tetraPVP-Eu(Ⅲ) with AIE characteristic and dual fluorescence was obtained through the coordination between TPE-tetraPVP and rare earth element Eu(Ⅲ). The amphiphilic 4-arm star polymer TPE-tetraPVP-Eu(Ⅲ) formed Pdots consisted of hydrophobic AIEgens TPE core and hydrophilic PVP shell by a self-assembling process. The morphology and particle size of Pdots were investigated by transmission electron microscope (TEM). Results showed that Pdots was a relatively uniform diameter around 20 nm and exhibited regular sphere morphology. The results of fluorescence experiments showed that TPE-tetraPVP-Eu(Ⅲ) Pdots had two emission bands centered at about 435 (blue) and 615 nm (red) with a wavelength difference of 180 nm, which were obtained under optimum excitation at 360 and 395 nm, respectively. Among them, the blue emission showed typical AIE property. Moreover, the lower critical solution temperature (LCST) of TPE-tetraPVP-Eu(Ⅲ) in aqueous solution was about 37℃, which was close to normal body temperature. Meanwhile, at different temperatures from 10 to 60℃, photoluminescence (PL) intensities of TPE-tetraPVP-Eu(Ⅲ) Pdots firstly decreased with increasing temperature from 10 to 36℃, and then increased with increasing temperature from 37 to 60℃. It was interesting that the fluorescent response of Pdots could be caused by the phase transfer of PVP. Besides, the PL intensity of Pdots in aqueous solution changed at different pH. Therefore, TPE-tetraPVP-Eu(Ⅲ) Pdots might be used as multi-functional and smart fluorescent sensors. Furthermore, the results of cellular imaging indicated the efficient cellular uptake and low cytotoxicity of Pdots in HeLa, HepG2 and A549 cells. And, the photoswitchable dual-emission could be easily realized in three cells by simply tuning the excitation wavelength. Thus, the non-conjugated Pdots is an ideal dual-color live cell imaging probe.
  • 加载中
    1. [1]

      Liu, Y. Y.; Stehlik, J.; Eichler, C.; Gullans, M. J.; Taylor, J. M.; Petta, J. R. Science 2015, 347, 285.  doi: 10.1126/science.aaa2501

    2. [2]

      Pietryga, J. M.; Park, Y. S.; Lim, J. H.; Fider, A. F.; Bae, W. K.; Brovelil, S. G. Chem. Rev. 2016, 116, 10513.  doi: 10.1021/acs.chemrev.6b00169

    3. [3]

      Sun, Q. H.; Li, Z.; Ma, N. Acta Chim. Sinica. 2018, 76, 43 (in Chinese).  doi: 10.11862/CJIC.2018.011
       

    4. [4]

      Xi, Z. F.; Yuan, F. L.; Wang, Z. F.; Li, S. H.; Fan, L. Z. Acta Chim. Sinica 2018, 76, 460 (in Chinese).
       

    5. [5]

      Xu, Y.; Zhao, Y.; Zhang, Y. J.; Cui, Z. F.; Wang, L. H.; Fan, C. H.; Gao, J. M.; Sun, Y. H. Acta Chim. Sinica 2018, 76, 393 (in Chinese).
       

    6. [6]

      Shao, Y. B.; Yue, J. L.; Sun, S.; Xia, H. Chinese J. Chem. 2017, 35, 73.  doi: 10.1002/cjoc.201600637

    7. [7]

      Huang, L.; Li, Z. C.; Huang, S. Q.; Peter, R.; Li, L. Acta Chim. Sinica 2017, 75, 300 (in Chinese).

    8. [8]

      Wegner, K. D.; Hildebrandt, N.Chem. Soc. Rev. 2015, 44, 4792.  doi: 10.1039/C4CS00532E

    9. [9]

      Song, Y. C.; Liu, J. X.; Shi, W.; Ma, H. M. Acta Chim. Sinica 2013, 71, 1607 (in Chinese).
       

    10. [10]

      Cai, P.; Jia, Y.; Feng, X.; Li, J.; Li, J. B. Chinese J. Chem. 2017, 35, 881.  doi: 10.1002/cjoc.201600840

    11. [11]

      Liu, H. Y.; Wu, P. J.; Kuo, S. Y.; Chen, C. P.; Chang, E. H.; Wu, C. Y.; Chan, Y. H. J. Am. Chem. Soc. 2015, 137, 10420.  doi: 10.1021/jacs.5b06710

    12. [12]

      Xiong, L. Q.; Cao, F. W.; Cao, X. M.; Guo, Y. X.; Zhang, Y. M.; Cai, X. Bioconjugate Chem. 2015, 5, 817.

    13. [13]

      Yu, J. B.; Rong, Y.; Kuo, C. T.; Hua, X.; Chiu, D. T. Anal. Chem. 2017, 1, 42.

    14. [14]

      Huang, Z. F.; Zhang, X. Q.; Zhang, X. Y.; Fu, C. K.; Wang, K.; Yuan, J. Y.; Tao, L.; Wei, Y. Polym. Chem. 2015, 6, 607.  doi: 10.1039/C4PY01421A

    15. [15]

      Birks, J. B. Photophysics of Aromatic Molecules, Wiley- Interscience, London, 1970.

    16. [16]

      Luo, J. D.; Xie, Z. L.; Lam, J. W. Y.; Chen, L.; Chen, H. Y.; Qiu, C. F.; Kwok, S. K.; Zhan, X. W.; Liu, Y.; Zhu, D. B.; Tang, B. Z. Chem. Commun. 2001, 18, 1740.

    17. [17]

      Mei, J.; Leung, L. C.; Kwok, T. K.; Lam, W. Y.; Tang, B. Z. Chem. Rev. 2015, 115, 11718.  doi: 10.1021/acs.chemrev.5b00263

    18. [18]

      Ji, G.; Yan, L. L.; Wang, H.; Ma, L.; Xu, B.; Tian, W. J. Acta Chim. Sinica 2016, 74, 917 (in Chinese).
       

    19. [19]

      Wu, W. B.; Mao, D.; Hu, F.; Xu, S. D.; Chao, C.; Zhang, X. M.; Yuan, Y. Y.; Ding, D.; Kong, D. L.; Liu, B. Adv. Mater. 2017, 29, 1700548.  doi: 10.1002/adma.201700548

    20. [20]

      Lu, H. G.; Su, F. Y.; Mei, Q.; Tian, Y. Q.; Tian, W. J.; Johnson, R. H.; Meldrum, D. R. J. Mater. Chem. 2012, 22, 9890.  doi: 10.1039/c2jm30258f

    21. [21]

      Guan, X. L.; Meng, L.; Jin, Q. J.; Lu, B. C.; Chen, Y. B.; Li, Z. F.; Lai, S. J.; Lei, Z. Q. Macromol. Mater. Eng. 2018, 303, 1700553.  doi: 10.1002/mame.201700553

    22. [22]

      Li, K.; Qin, W.; Ding, D.; Tomczak, N. D.; Geng, J. L.; Liu, R. G.; Liu, J. Z.; Zhang, X. H.; Liu, H. G.; Liu, B.; Tang, B. Z. Sci. Rep. 2013, 3, 1150.  doi: 10.1038/srep01150

    23. [23]

      Zhang, Y.; Chen, Y. J.; Li, X.; Zhang, J. Z.; Chen, J. L.; Xu, B.; Fu, X. Q.; Tian, W. J. Polym. Chem. 2014, 5, 3824.  doi: 10.1039/C4PY00075G

    24. [24]

      Zhang, X.; Liu, M. Y.; Yang, B.; Zhang, X. Y.; Chi, Z.; Chi, Z. G.; Liu, S. W.; Xu, J.; Wei, Y. Polym. Chem. 2013, 4, 5060.  doi: 10.1039/c3py00860f

    25. [25]

      Liu, Y. Z.; Mao, L. C.; Yang, S. J.; Liu, M.; Huang, H. Y.; Wen, Y. Q.; Deng, F. J.; Li, Y. X.; Zhang, X. Y.; WEI, Y. Dyes Pigments 2018, 158, 79.  doi: 10.1016/j.dyepig.2018.05.032

    26. [26]

      Wu, J. T.; Zhang, J.; Deng, C.; Meng, F.; Cheng, R.; Zhong, Z. Y. ACS Appl. Mater. Interfaces 2017, 9, 3985.

    27. [27]

      Zhao, Y.; Shi, C.; Yang, X. D.; Shen, B.; Sun, Y. Q.; Chen, Y.; Xu, X. W.; Sun, H. C.; Yu, K.; Yang, B.; Lin, Q. ACS Nano 2016, 10, 5856.  doi: 10.1021/acsnano.6b00770

    28. [28]

      Guan, X. L.; Zhang, D. H.; Meng, L.; Zhang, Y.; Jia, T. M.; Wei, Q. B.; Lu, D. D.; Ma, H. C. Ind. Eng. Chem. Res. 2017, 56, 680.  doi: 10.1021/acs.iecr.6b03780

    29. [29]

      Sabbatini, L.; Malitesta, C.; De Giglio, E. J. Electron Spectrosc. Relat. Phenom. 1999, 100, 35.  doi: 10.1016/S0368-2048(99)00039-0

    30. [30]

      Wang, Y.; Jiang, H. L. Mater. Lett. 2007, 61, 2779.  doi: 10.1016/j.matlet.2006.10.055

    31. [31]

      Zhong, W. B.; Zeng, X. Y.; Chen, J.; Hong, Y. X.; Xiao, L. X.; Zhang, P. S. Polym. Chem. 2017, 8, 4849.  doi: 10.1039/C7PY00834A

    32. [32]

      Chithrani, B. D.; Ghazani, A. A.; Chan, W. C. Nano Lett. 2006, 6, 662.  doi: 10.1021/nl052396o

    33. [33]

      Zhou, P.; Li, G. Y.; Shao, Z. Z.; Pan, X. Y.; Yu, T. Y. J. Phys. Chem. B 2001, 105, 12469.  doi: 10.1021/jp0125395

    34. [34]

      Guan, X. L.; Zhang, D. H.; Jia, T. M.; Zhang, Y.; Meng, L.; Jin, Q. J.; Ma, H. C.; Lu, D. D.; Lei, Z. Q. RSC Adv. 2016, 6, 107622.  doi: 10.1039/C6RA23380E

    35. [35]

      Kato, T.; Kawaguchi, A.; Nagata, K.; Hatanaka, k. Biochem. Biophys. Res. Commun. 2010, 394, 200.  doi: 10.1016/j.bbrc.2010.02.155

  • 加载中
    1. [1]

      Yanyang Li Zongpei Zhang Kai Li Shuangquan Zang . Ideological and Political Design for the Comprehensive Experiment of the Synthesis and Aggregation-Induced Emission (AIE) Performance Study of Salicylaldehyde Schiff-Base. University Chemistry, 2024, 39(2): 105-109. doi: 10.3866/PKU.DXHX202307020

    2. [2]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    3. [3]

      Hongxia Yan Weixu Feng Junyan Yao Wei Tian Rui Wang . Illuminating the Teaching of Science and Engineering Graduate Courses with “Curriculum Ideology and Politics”. University Chemistry, 2024, 39(6): 122-127. doi: 10.3866/PKU.DXHX202310059

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    6. [6]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    7. [7]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    8. [8]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    9. [9]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    10. [10]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    11. [11]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    14. [14]

      Zishuo Yi Peng Liu Yan Xu . Fluorescent “Chameleon”: A Popular Science Experiment Based on Dynamic Luminescence. University Chemistry, 2024, 39(9): 304-310. doi: 10.12461/PKU.DXHX202311079

    15. [15]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    16. [16]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    17. [17]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    18. [18]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    19. [19]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    20. [20]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

Metrics
  • PDF Downloads(16)
  • Abstract views(1426)
  • HTML views(243)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return