Citation: Sun Yanhui, Qi Youxiao, Shen You, Jing Cuijie, Chen Xiaoxiao, Wang Xinxing. Preparation of Electrochemical Sensor Based on RGO-Au-ZIF-8 Composite and Its Application in Simultaneous Detection of Lead Ions and Copper Ions[J]. Acta Chimica Sinica, ;2020, 78(2): 147-154. doi: 10.6023/A19090338 shu

Preparation of Electrochemical Sensor Based on RGO-Au-ZIF-8 Composite and Its Application in Simultaneous Detection of Lead Ions and Copper Ions

  • Corresponding author: Sun Yanhui, sunyh@qust.edu.cn Wang Xinxing, wangxx@qust.edu.cn
  • Received Date: 12 September 2019
    Available Online: 10 February 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21804076), the Natural Science Foundation of Shandong Province (No. ZR2017BB040), the Applied Basic Research Program of Qingdao (No. 17-1-1-65-jch) and the Open Fund of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao University of Science and Technology (No. SATM201708)the Natural Science Foundation of Shandong Province ZR2017BB040the Open Fund of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao University of Science and Technology SATM201708the Applied Basic Research Program of Qingdao 17-1-1-65-jchthe National Natural Science Foundation of China 21804076

Figures(8)

  • Metal organic frameworks (MOFs) have unique advantages in adsorption and preconcentration of heavy metal ions due to their structure and composition characteristics, which make them show great potential in optical sensing of heavy metal ions. However, their applications in the field of electrochemical sensing is greatly limited because of their poor conductivity. In this work, a functionalized MOF composite, thermally reduced graphene oxide-Au nanoparticles-zeolitic imidazolate skeleton material (RGO-Au-ZIF-8), was fabricated. It exhibits much improved electrochemical properties compared with the pristine MOF. A novel electrochemical sensing platform was constructed based on it, and simultaneous detection of lead ions (Pb2+) and copper ions (Cu2+) in aqueous solution was realized. Specifically, the Au-ZIF-8 was prepared by adding polyvinylpyrrolidone (PVP)-stabilized Au nanoparticles (AuNPs) to the reaction solution of ZIF-8. The modification of AuNPs effectively improved the conductivity of the material. After compounding with RGO, the RGO-Au-ZIF-8 composite was prepared. The RGO was used as scaffold for the Au-ZIF-8 in the composite to increase the effective surface area of electrode and improve conductivity. The morphology and structure of the prepared materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy (UV-Vis). The electrochemical properties of the modified electrodes were characterized by various electrochemical techniques. The experimental parameters, such as pH value of working solution, accumulation potential, accumulation time and composition ratio of Au-ZIF-8 to RGO were optimized. Under the optimized conditions, simultaneous and sensitive detection of Pb2+ and Cu2+ on the prepared electrochemical sensor was realized with the detection limits of 2.6×10-9 and 7.8×10-9 mol·L-1 for Pb2+ and Cu2+, respectively (S/N=3). The interference test showed that the electrochemical sensor has good selectivity for the detection of Pb2+ and Cu2+, and further electrochemical studies revealed that the designed sensor has excellent reproducibility and good stability. The result of recovery test indicated that the prepared electrochemical sensor has great potential in Pb2+ and Cu2+ detection in real water samples. This work provides a new platform for simultaneous, rapid and sensitive detection of heavy metal ions, and greatly expands the electrochemical applications of MOF materials.
  • 加载中
    1. [1]

      Awual, M. R.; Hasan, M. M.; Shahat, A. Sens. Actuators, B 2014, 203, 854.  doi: 10.1016/j.snb.2014.07.063

    2. [2]

      Rodriguez Martin, J. A.; De Arana, C.; Ramos-Miras, J. J.; Gil, C.; Boluda, R. Environ. Pollut. 2015, 196, 156.  doi: 10.1016/j.envpol.2014.10.014

    3. [3]

      Saha, D.; Barakat, S.; Bramer, S. V.; Nelson, K. A.; Hensley, D. K.; Chen, J. H. ACS Appl. Mater. Interfaces 2016, 8, 34132.  doi: 10.1021/acsami.6b12190

    4. [4]

      Mo, J.; Zhou, L.; Li, X.; Li, Q.; Wang, L.; Wang, Z. Microchem. J. 2017, 130, 353.  doi: 10.1016/j.microc.2016.10.008

    5. [5]

      Choi, H. W.; Lee, K. H.; Hur, N. H.; Lim, H. B. Anal. Chim. Acta 2014, 847, 10.  doi: 10.1016/j.aca.2014.08.041

    6. [6]

      Zeinu, K. M.; Hou, H. J.; Liu, B. C.; Yuan, X. Q.; Long, H.; Zhu, X. L.; Hu, J. P.; Yang, J. K.; Liang, S.; Wu, X. J. J. Mater. Chem. A 2016, 4, 13967.  doi: 10.1039/C6TA04881A

    7. [7]

      Zhang, Z. H.; Ji, H. F.; Song, Y. P.; Zhang, S.; Wang, M. H.; Jia, C. C.; Tian, J. Y.; He, L. H.; Zhang, X. J.; Liu, C. S. Biosens. Bioelectron. 2017, 94, 358.  doi: 10.1016/j.bios.2017.03.014

    8. [8]

      Cui, L.; Wu, J.; Li, J.; Ju, H. X. Anal. Chem. 2015, 87, 10635.  doi: 10.1021/acs.analchem.5b03287

    9. [9]

      Li, L. B.; Liu, D.; Shi, A. P.; You, T. Y. Sens. Actuators, B 2018, 255, 1762.  doi: 10.1016/j.snb.2017.08.190

    10. [10]

      Zhou, S. F.; Wang, J. J.; Gan, L.; Han, X. J.; Fan, H. L.; Mei, L. Y.; Huang, J.; Liu, Y. Q. J. Alloy. Compd. 2017, 721, 492.  doi: 10.1016/j.jallcom.2017.05.321

    11. [11]

      Lv, H. Y.; Teng, Z. Y.; Wang, S. C.; Feng, K.; Wang, X. L.; Wang, C. Y.; Wang, G. X. Sens. Actuators, B 2018, 256, 98.  doi: 10.1016/j.snb.2017.10.053

    12. [12]

      Zhu, G. F.; Chen, L. T.; Cheng, G. H.; Zhao, J.; Yang, C.; Zhang, Y. Z.; Wang, X.; Fan, J. Acta Chim. Sinica 2019, 77, 434.
       

    13. [13]

      Ma, Y. L.; Liu, R. X.; Meng, S. Y.; Niu, L. T.; Yang, Z. W.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 153.
       

    14. [14]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841.
       

    15. [15]

      Li, Y.; Zou, B.; Xiao, A. S.; Zhang, H. X. Chin. J. Chem. 2017, 35, 1501.  doi: 10.1002/cjoc.201700151

    16. [16]

      Sun, D. R.; Li, Z. H. Chin. J. Chem. 2017, 35, 135.  doi: 10.1002/cjoc.201600647

    17. [17]

      Lu, M. X.; Deng, Y. J.; Luo, Y.; Lv, J. P.; Li, T. B.; Xu, J.; Chen, S. W.; Wang, J. Y. Anal. Chem. 2019, 91, 888.  doi: 10.1021/acs.analchem.8b03764

    18. [18]

      Guo, H. L.; Zhu, G. S.; Hewitt, L. J.; Qiu, S. L. J. Am. Chem. Soc. 2009, 131, 1646.  doi: 10.1021/ja8074874

    19. [19]

      Banerjee, R.; Britt, H. F. D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 3875.  doi: 10.1021/ja809459e

    20. [20]

      Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Angew. Chem., Int. Ed. 2010, 49, 548.  doi: 10.1002/anie.200905645

    21. [21]

      Chizallet, C.; Lazare, S.; Bazer-Bachi, D.; Bonnier, F.; Lecocq, V.; Soyer, E.; Quoineaud, A. A.; Bats, N. J. Am. Chem. Soc. 2010, 132, 2365.

    22. [22]

      Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22.  doi: 10.3866/PKU.WHXB201706302
       

    23. [23]

      Qiu, S. L.; Zhu, G. S. Coord. Chem. Rev. 2009, 253, 2891.  doi: 10.1016/j.ccr.2009.07.020

    24. [24]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339.
       

    25. [25]

      Gao, S. S.; Xu, C. Y.; Yalikun, N.; Mamat, X.; Li, Y. T.; Wagberg, T.; Hu, X.; Liu, J.; Luo, J.; Hu, G. Z. J. Electrochem. Soc. 2017, 164, H967.  doi: 10.1149/2.1611713jes

    26. [26]

      Xiao, L. L.; Xu, H. B.; Zhou, S. H.; Song, T.; Wang, H. H.; Li, S. Z.; Gan, W.; Yuan, Q. H. Electrochim. Acta 2014, 143, 143.  doi: 10.1016/j.electacta.2014.08.021

    27. [27]

      Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Nano Lett. 2011, 11, 3394.  doi: 10.1021/nl201796s

    28. [28]

      Zhang, Z. X.; Luan, W. X.; Zhang, C. Y.; Liu, Y. J. Acta Chim. Sinica 2017, 75, 403.  doi: 10.7503/cjcu20160717
       

    29. [29]

      Zhu, X. L.; Liu, B. C.; Hou, H. J.; Huang, Z. Y.; Zeinu, K. M.; Huang, L.; Yuan, X. Q.; Guo, D. B.; Hu, J. P.; Yang, J. K. Electrochim. Acta 2017, 248, 46.  doi: 10.1016/j.electacta.2017.07.084

    30. [30]

      Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X. Y.; Perman, J. A.; Ma, S. Q. J. J. Mater. Chem. A 2017, 5, 8385.  doi: 10.1039/C7TA01066D

    31. [31]

      Wei, Y.; Gao, C.; Meng, F. L.; Li, H. H.; Wang, L.; Liu, J. H.; Huang, X. J. J. Phys. Chem. C 2011, 116, 1034.

    32. [32]

      Guo, Z.; Li, D. D.; Luo, X. K.; Li, Y. H.; Zhao, Q. N.; Li, M. M.; Zhao, Y. T.; Sun, T. S.; Ma, C. J. Colloid Interface Sci. 2017, 490, 11.  doi: 10.1016/j.jcis.2016.11.006

    33. [33]

      Yu, L. Y.; Zhang, Q.; Yang, B. R.; Xu, Q.; Xu, Q.; Hu, X. Y. Sens. Actuators, B 2018, 259, 540.  doi: 10.1016/j.snb.2017.12.103

    34. [34]

      Frens, G. Nat. Phys. Sci. 1973, 241, 20.  doi: 10.1038/physci241020a0

    35. [35]

      Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; Duchene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310.  doi: 10.1038/nchem.1272

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    4. [4]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    5. [5]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    6. [6]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    7. [7]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    8. [8]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    11. [11]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    12. [12]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    13. [13]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    14. [14]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    15. [15]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    16. [16]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    17. [17]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    18. [18]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    19. [19]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(9)
  • Abstract views(855)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return