Citation: Sun Yanhui, Qi Youxiao, Shen You, Jing Cuijie, Chen Xiaoxiao, Wang Xinxing. Preparation of Electrochemical Sensor Based on RGO-Au-ZIF-8 Composite and Its Application in Simultaneous Detection of Lead Ions and Copper Ions[J]. Acta Chimica Sinica, ;2020, 78(2): 147-154. doi: 10.6023/A19090338 shu

Preparation of Electrochemical Sensor Based on RGO-Au-ZIF-8 Composite and Its Application in Simultaneous Detection of Lead Ions and Copper Ions

  • Corresponding author: Sun Yanhui, sunyh@qust.edu.cn Wang Xinxing, wangxx@qust.edu.cn
  • Received Date: 12 September 2019
    Available Online: 10 February 2020

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21804076), the Natural Science Foundation of Shandong Province (No. ZR2017BB040), the Applied Basic Research Program of Qingdao (No. 17-1-1-65-jch) and the Open Fund of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao University of Science and Technology (No. SATM201708)the Natural Science Foundation of Shandong Province ZR2017BB040the Open Fund of Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, Ministry of Education, Qingdao University of Science and Technology SATM201708the Applied Basic Research Program of Qingdao 17-1-1-65-jchthe National Natural Science Foundation of China 21804076

Figures(8)

  • Metal organic frameworks (MOFs) have unique advantages in adsorption and preconcentration of heavy metal ions due to their structure and composition characteristics, which make them show great potential in optical sensing of heavy metal ions. However, their applications in the field of electrochemical sensing is greatly limited because of their poor conductivity. In this work, a functionalized MOF composite, thermally reduced graphene oxide-Au nanoparticles-zeolitic imidazolate skeleton material (RGO-Au-ZIF-8), was fabricated. It exhibits much improved electrochemical properties compared with the pristine MOF. A novel electrochemical sensing platform was constructed based on it, and simultaneous detection of lead ions (Pb2+) and copper ions (Cu2+) in aqueous solution was realized. Specifically, the Au-ZIF-8 was prepared by adding polyvinylpyrrolidone (PVP)-stabilized Au nanoparticles (AuNPs) to the reaction solution of ZIF-8. The modification of AuNPs effectively improved the conductivity of the material. After compounding with RGO, the RGO-Au-ZIF-8 composite was prepared. The RGO was used as scaffold for the Au-ZIF-8 in the composite to increase the effective surface area of electrode and improve conductivity. The morphology and structure of the prepared materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and UV-visible absorption spectroscopy (UV-Vis). The electrochemical properties of the modified electrodes were characterized by various electrochemical techniques. The experimental parameters, such as pH value of working solution, accumulation potential, accumulation time and composition ratio of Au-ZIF-8 to RGO were optimized. Under the optimized conditions, simultaneous and sensitive detection of Pb2+ and Cu2+ on the prepared electrochemical sensor was realized with the detection limits of 2.6×10-9 and 7.8×10-9 mol·L-1 for Pb2+ and Cu2+, respectively (S/N=3). The interference test showed that the electrochemical sensor has good selectivity for the detection of Pb2+ and Cu2+, and further electrochemical studies revealed that the designed sensor has excellent reproducibility and good stability. The result of recovery test indicated that the prepared electrochemical sensor has great potential in Pb2+ and Cu2+ detection in real water samples. This work provides a new platform for simultaneous, rapid and sensitive detection of heavy metal ions, and greatly expands the electrochemical applications of MOF materials.
  • 加载中
    1. [1]

      Awual, M. R.; Hasan, M. M.; Shahat, A. Sens. Actuators, B 2014, 203, 854.  doi: 10.1016/j.snb.2014.07.063

    2. [2]

      Rodriguez Martin, J. A.; De Arana, C.; Ramos-Miras, J. J.; Gil, C.; Boluda, R. Environ. Pollut. 2015, 196, 156.  doi: 10.1016/j.envpol.2014.10.014

    3. [3]

      Saha, D.; Barakat, S.; Bramer, S. V.; Nelson, K. A.; Hensley, D. K.; Chen, J. H. ACS Appl. Mater. Interfaces 2016, 8, 34132.  doi: 10.1021/acsami.6b12190

    4. [4]

      Mo, J.; Zhou, L.; Li, X.; Li, Q.; Wang, L.; Wang, Z. Microchem. J. 2017, 130, 353.  doi: 10.1016/j.microc.2016.10.008

    5. [5]

      Choi, H. W.; Lee, K. H.; Hur, N. H.; Lim, H. B. Anal. Chim. Acta 2014, 847, 10.  doi: 10.1016/j.aca.2014.08.041

    6. [6]

      Zeinu, K. M.; Hou, H. J.; Liu, B. C.; Yuan, X. Q.; Long, H.; Zhu, X. L.; Hu, J. P.; Yang, J. K.; Liang, S.; Wu, X. J. J. Mater. Chem. A 2016, 4, 13967.  doi: 10.1039/C6TA04881A

    7. [7]

      Zhang, Z. H.; Ji, H. F.; Song, Y. P.; Zhang, S.; Wang, M. H.; Jia, C. C.; Tian, J. Y.; He, L. H.; Zhang, X. J.; Liu, C. S. Biosens. Bioelectron. 2017, 94, 358.  doi: 10.1016/j.bios.2017.03.014

    8. [8]

      Cui, L.; Wu, J.; Li, J.; Ju, H. X. Anal. Chem. 2015, 87, 10635.  doi: 10.1021/acs.analchem.5b03287

    9. [9]

      Li, L. B.; Liu, D.; Shi, A. P.; You, T. Y. Sens. Actuators, B 2018, 255, 1762.  doi: 10.1016/j.snb.2017.08.190

    10. [10]

      Zhou, S. F.; Wang, J. J.; Gan, L.; Han, X. J.; Fan, H. L.; Mei, L. Y.; Huang, J.; Liu, Y. Q. J. Alloy. Compd. 2017, 721, 492.  doi: 10.1016/j.jallcom.2017.05.321

    11. [11]

      Lv, H. Y.; Teng, Z. Y.; Wang, S. C.; Feng, K.; Wang, X. L.; Wang, C. Y.; Wang, G. X. Sens. Actuators, B 2018, 256, 98.  doi: 10.1016/j.snb.2017.10.053

    12. [12]

      Zhu, G. F.; Chen, L. T.; Cheng, G. H.; Zhao, J.; Yang, C.; Zhang, Y. Z.; Wang, X.; Fan, J. Acta Chim. Sinica 2019, 77, 434.
       

    13. [13]

      Ma, Y. L.; Liu, R. X.; Meng, S. Y.; Niu, L. T.; Yang, Z. W.; Lei, Z. Q. Acta Chim. Sinica 2019, 77, 153.
       

    14. [14]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841.
       

    15. [15]

      Li, Y.; Zou, B.; Xiao, A. S.; Zhang, H. X. Chin. J. Chem. 2017, 35, 1501.  doi: 10.1002/cjoc.201700151

    16. [16]

      Sun, D. R.; Li, Z. H. Chin. J. Chem. 2017, 35, 135.  doi: 10.1002/cjoc.201600647

    17. [17]

      Lu, M. X.; Deng, Y. J.; Luo, Y.; Lv, J. P.; Li, T. B.; Xu, J.; Chen, S. W.; Wang, J. Y. Anal. Chem. 2019, 91, 888.  doi: 10.1021/acs.analchem.8b03764

    18. [18]

      Guo, H. L.; Zhu, G. S.; Hewitt, L. J.; Qiu, S. L. J. Am. Chem. Soc. 2009, 131, 1646.  doi: 10.1021/ja8074874

    19. [19]

      Banerjee, R.; Britt, H. F. D.; Knobler, C.; O'Keeffe, M.; Yaghi, O. M. J. Am. Chem. Soc. 2009, 131, 3875.  doi: 10.1021/ja809459e

    20. [20]

      Li, Y. S.; Liang, F. Y.; Bux, H.; Feldhoff, A.; Yang, W. S.; Caro, J. Angew. Chem., Int. Ed. 2010, 49, 548.  doi: 10.1002/anie.200905645

    21. [21]

      Chizallet, C.; Lazare, S.; Bazer-Bachi, D.; Bonnier, F.; Lecocq, V.; Soyer, E.; Quoineaud, A. A.; Bats, N. J. Am. Chem. Soc. 2010, 132, 2365.

    22. [22]

      Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22.  doi: 10.3866/PKU.WHXB201706302
       

    23. [23]

      Qiu, S. L.; Zhu, G. S. Coord. Chem. Rev. 2009, 253, 2891.  doi: 10.1016/j.ccr.2009.07.020

    24. [24]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339.
       

    25. [25]

      Gao, S. S.; Xu, C. Y.; Yalikun, N.; Mamat, X.; Li, Y. T.; Wagberg, T.; Hu, X.; Liu, J.; Luo, J.; Hu, G. Z. J. Electrochem. Soc. 2017, 164, H967.  doi: 10.1149/2.1611713jes

    26. [26]

      Xiao, L. L.; Xu, H. B.; Zhou, S. H.; Song, T.; Wang, H. H.; Li, S. Z.; Gan, W.; Yuan, Q. H. Electrochim. Acta 2014, 143, 143.  doi: 10.1016/j.electacta.2014.08.021

    27. [27]

      Personick, M. L.; Langille, M. R.; Zhang, J.; Mirkin, C. A. Nano Lett. 2011, 11, 3394.  doi: 10.1021/nl201796s

    28. [28]

      Zhang, Z. X.; Luan, W. X.; Zhang, C. Y.; Liu, Y. J. Acta Chim. Sinica 2017, 75, 403.  doi: 10.7503/cjcu20160717
       

    29. [29]

      Zhu, X. L.; Liu, B. C.; Hou, H. J.; Huang, Z. Y.; Zeinu, K. M.; Huang, L.; Yuan, X. Q.; Guo, D. B.; Hu, J. P.; Yang, J. K. Electrochim. Acta 2017, 248, 46.  doi: 10.1016/j.electacta.2017.07.084

    30. [30]

      Wang, Y.; Wang, L.; Huang, W.; Zhang, T.; Hu, X. Y.; Perman, J. A.; Ma, S. Q. J. J. Mater. Chem. A 2017, 5, 8385.  doi: 10.1039/C7TA01066D

    31. [31]

      Wei, Y.; Gao, C.; Meng, F. L.; Li, H. H.; Wang, L.; Liu, J. H.; Huang, X. J. J. Phys. Chem. C 2011, 116, 1034.

    32. [32]

      Guo, Z.; Li, D. D.; Luo, X. K.; Li, Y. H.; Zhao, Q. N.; Li, M. M.; Zhao, Y. T.; Sun, T. S.; Ma, C. J. Colloid Interface Sci. 2017, 490, 11.  doi: 10.1016/j.jcis.2016.11.006

    33. [33]

      Yu, L. Y.; Zhang, Q.; Yang, B. R.; Xu, Q.; Xu, Q.; Hu, X. Y. Sens. Actuators, B 2018, 259, 540.  doi: 10.1016/j.snb.2017.12.103

    34. [34]

      Frens, G. Nat. Phys. Sci. 1973, 241, 20.  doi: 10.1038/physci241020a0

    35. [35]

      Lu, G.; Li, S.; Guo, Z.; Farha, O. K.; Hauser, B. G.; Qi, X.; Wang, Y.; Wang, X.; Han, S.; Liu, X.; Duchene, J. S.; Zhang, H.; Zhang, Q.; Chen, X.; Ma, J.; Loo, S. C.; Wei, W. D.; Yang, Y.; Hupp, J. T.; Huo, F. Nat. Chem. 2012, 4, 310.  doi: 10.1038/nchem.1272

  • 加载中
    1. [1]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    2. [2]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    3. [3]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    4. [4]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    8. [8]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    9. [9]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    10. [10]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    11. [11]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    12. [12]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    13. [13]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    14. [14]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    15. [15]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    16. [16]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    18. [18]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    19. [19]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    20. [20]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

Metrics
  • PDF Downloads(9)
  • Abstract views(1074)
  • HTML views(230)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return