Citation: Yang Jingge, Li Yang, Wang Xiaoai, Wang Dong, Sun Yawei, Wang Jiqian, Xu Hai. Self-Assembly of Cyclic Dipeptides and Their Fluorescent Properties[J]. Acta Chimica Sinica, ;2019, 77(12): 1279-1286. doi: 10.6023/A19090331 shu

Self-Assembly of Cyclic Dipeptides and Their Fluorescent Properties

  • Corresponding author: Wang Jiqian, jqwang@upc.edu.cn Xu Hai, xuh@upc.edu.cn
  • Received Date: 7 September 2019
    Available Online: 21 December 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21573287, 21673293, U1832108)the National Natural Science Foundation of China U1832108the National Natural Science Foundation of China 21673293the National Natural Science Foundation of China 21573287

Figures(7)

  • Cyclic dipeptide (CDP) is a kind of the smallest cyclic peptide with two amino acids cyclization through amide bonds. The two amide bonds with four hydrogen bonding sites give CDPs a high self-assembly propensity, mainly driven by the hydrogen bonding interactions. In this paper, we have designed four CDPs, c-SF, c-SY, c-SH and c-DF, and studied their self-assembly performance in aqueous solution with circular dichroism spectroscopy (CD) and atomic force microscopy (AFM), including the effects of pH and zinc ion coordination on self-assembly. The fluorescence properties of CDP self-assemblies have also been studied. CD results showed that c-SF, c-SY and c-DF adopted a β-sheet conformation, while c-SH was random coil secondary structure at the concentration of 2.0 mmol/L and pH 5.0. AFM results showed that c-SF, c-SY and c-DF could form nanofibers with different diameters ranged from 1.0 to 3.0 nm. In addition, c-SY self-assembled hierarchically over time. Not only the nanofiber diameter gradually increased, but also the nanofibers entangled into 3D networks. Although c-SH did not self-assemble at the concentration of 3.0 mmol/L and pH 7.0, it could form monolayers with the induction of zinc ion at pH 9.0. The self-assemblies of each CDP had different multiple fluorescent emission peaks with excitation of different wavelengths. Especially, c-SF emitted green fluorescent light under UV light of 365 nm. The fluorescent emission intensity of CDPs was much stronger than their corresponding linear dipeptides. It was assumed that the diketopiperazine structure contributed to the fluorescence enhancement. Moreover, the fluorescent emission intensity of CDP self-assemblies was much higher than that of their free molecules, which meant that the ordered aggregation made a significant contribution to the fluorescent properties. Both the coordination of zinc ions with the imidazole groups on histidine and the oxidation of phenolic hydroxyl groups in tyrosine could enhance the fluorescent emission intensity of CDPs. It was assumed that CDP molecules stacked one by one to form nanofibers during self-assembly. The diketopiperazine ring of CDPs and its self-assembly endowed CDPs with special fluorescent properties.
  • 加载中
    1. [1]

      Wang, J.; Zou, Q.-L.; Yan, X.-H. Acta Chim. Sinica 2017, 75, 933 (in Chinese).
       

    2. [2]

      Yan, X.; Zhu, P.; Li, J. Chem. Soc. Rev. 2010, 39, 1877.  doi: 10.1039/b915765b

    3. [3]

      Wang, J.-X.; Qin, S.-Y.; Cai, T.-T.; Zhang, X.-Z.; Zhuo, R.-X. Chem. J. Chin. Univ. 2014, 36, 201 (in Chinese).

    4. [4]

      Han, S.; Cao, S.; Wang, Y.; Wang, J.; Xia, D.; Xu, H.; Zhao, X.; Lu, J. Chem.-Eur. J. 2011, 17, 13095.  doi: 10.1002/chem.201101970

    5. [5]

      Li, Q.; Jia, Y.; Li, J.-B. Acta Chim. Sinica 2019, 77, 1173 (in Chinese).
       

    6. [6]

      MaassenVanDenBrink, A.; Terwindt, G. M.; van den Maagdenberg, A M. J. M. Genome Med. 2018, 10, 10.  doi: 10.1186/s13073-018-0524-7

    7. [7]

      Inaba, H.; Matsuura, K. Chem. Rec. 2019, 19, 843.  doi: 10.1002/tcr.201800149

    8. [8]

      Apter, B.; Lapshina, N.; Handelman, A.; Rosenman, G. J. Pept. Sci. 2019, 25, 3164.  doi: 10.1002/psc.3164

    9. [9]

      Yang, W.-T.; Guo, W.-S.; Zhang, B.-B.; Chang, J. Acta Chim. Sinica 2014, 72, 1209 (in Chinese).
       

    10. [10]

      Wang, Z.-Y.; Cai, Y.-B.; Yi, L.-N.; Gao, J.; Yang, Z.-M. Chin. J. Chem. 2017, 35, 1057.  doi: 10.1002/cjoc.201600813

    11. [11]

      Kwak, J.; Lee, S. Y. Langmuir 2013, 29, 4477.  doi: 10.1021/la4003252

    12. [12]

      Elmes, R. B. P.; Jolliffe, K. A. Chem. Commun. 2015, 51, 4951.  doi: 10.1039/C4CC10095F

    13. [13]

      Prasad, C. Peptides 1995, 16, 151.  doi: 10.1016/0196-9781(94)00017-Z

    14. [14]

      Benedetti, E.; Corradini, P.; Pedone, C. J. Phys. Chem. 1969, 73, 2891.  doi: 10.1021/j100843a018

    15. [15]

      Corey, R. B. J. Am. Chem. Soc. 1938, 60, 1598.  doi: 10.1021/ja01274a023

    16. [16]

      Manchineella, S.; Govindaraju, T. ChemPlusChem 2017, 82, 88.  doi: 10.1002/cplu.201600450

    17. [17]

      Govindaraju, T. Supramol. Chem. 2011, 23, 759.  doi: 10.1080/10610278.2011.628393

    18. [18]

      Govindaraju, T.; Pandeeswar, M.; Jayaramulu, K.; Jaipuria, G.; Atreya, H. S. Supramol. Chem. 2011, 23, 487.  doi: 10.1080/10610278.2010.550685

    19. [19]

      Palmore, G. T. R.; Luo, T. J. M.; McBride-Wieser, M. T.; Picciotto, E. A.; Reynoso-Paz, C. M. Chem. Mater. 1999, 11, 3315.  doi: 10.1021/cm990400p

    20. [20]

      Di Blasio, B.; Pavone, V.; Nastri, F.; Isernia, C.; Saviano, M.; Pedone, C.; Cucinotta, V.; Impellizzeri, G.; Rizzarelli, E.; Vecchio, G. Natl. Acad. Sci. U. S. A. 1992, 89, 7218.  doi: 10.1073/pnas.89.15.7218

    21. [21]

      Bergeron, R. J.; Phanstiel IV, O.; Yao, G. W.; Milstein, S.; Weimar, W. R. J. Am. Chem. Soc. 1994, 116, 8479.  doi: 10.1021/ja00098a007

    22. [22]

      Bellezza, I.; Peirce, M. J.; Minelli, A. Trends Mol. Med. 2014, 20, 551.  doi: 10.1016/j.molmed.2014.08.003

    23. [23]

      González, O.; Ortíz-Castro, R.; Díaz-Pérez, C.; Díaz-Pérez, A. L.; Magaña-Dueñas, V.; López-Bucio, J.; Campos-García, J. Microb. Ecol. 2017, 73, 616.  doi: 10.1007/s00248-016-0896-4

    24. [24]

      Nishanth Kumar, S.; Dileep, C.; Mohandas, C.; Nambisan, B.; Ca, J. J. Pept. Sci. 2014, 20, 173.  doi: 10.1002/psc.2594

    25. [25]

      Van der Merwe, E.; Huang, D.; Peterson, D.; Kilian, G.; Milne, P. J.; Van de Venter, M.; Frost, C. Peptides 2008, 29, 1305.  doi: 10.1016/j.peptides.2008.03.010

    26. [26]

      Yang, M.; Yuan, C.; Shen, G.; Chang, R.; Xing, R.; Yan, X. J. Colloid Interface Sci. 2019, 557, 458.  doi: 10.1016/j.jcis.2019.09.049

    27. [27]

      Tao, K.; Makam, P.; Aizen, R.; Gazit, E. Science 2017, 358, 9756.  doi: 10.1126/science.aam9756

    28. [28]

      Tao, K.; Fan, Z.; Sun, L.; Makam, P.; Tian, Z.; Ruegsegger, M.; Shaham-Niv, S.; Hansford, D.; Aizen, R.; Pan, Z.; Galster, S.; Ma, J.-J.; Yan, F.; Si, M.-S.; Qu, S.-N.; Zhang, M.-J.; Gazit, E.; Li, J.-B. Nat. Commun. 2018, 9, 3217.  doi: 10.1038/s41467-018-05568-9

    29. [29]

      Seo, M. J.; Song, J.; Kantha, C.; Khazi, M. I.; Kundapur, U.; Heo, J. M.; Kim, J. M. Langmuir 2018, 34, 8365.  doi: 10.1021/acs.langmuir.8b00743

    30. [30]

      Yang, M.; Xing, R.; Shen, G.; Yuan, C.; Yan, X. Colloids Surf., A 2019, 572, 259.  doi: 10.1016/j.colsurfa.2019.04.020

    31. [31]

      Zong, Q.-Y.; Geng, H.-M.; Wang, L.; Ye, L.; Zhang, A.-Y.; Shao, Z.-Q.; Feng, Z.-G. Acta Chim. Sinica 2015, 73, 423 (in Chinese).
       

    32. [32]

      Tucker, M. J.; Oyola, R.; Gai, F. Biopolymers 2006, 83, 571.  doi: 10.1002/bip.20587

    33. [33]

      Fan, Z.; Sun, L.; Huang, Y.; Wang, Y.; Zhang, M. Nat. Nanotechnol. 2016, 11, 388.  doi: 10.1038/nnano.2015.312

    34. [34]

      Wang, C.; Zhang, L.; Yang, J.; Yang, J.; Wang, D.; Sun, Y.; Wang, J. Appl. Surf. Sci. 2018, 453, 173.  doi: 10.1016/j.apsusc.2018.04.240

    35. [35]

      Wang, J.; Zhang, L.; Yang, J.; Yan, H.; Li, X.; Wang, C.; Wang, D.; Sun, Y.; Xu, H. Langmuir 2019, 35, 5617.  doi: 10.1021/acs.langmuir.9b00265

    36. [36]

      Zou, R.; Wang, Q.; Wu, J.; Schmuck, C.; Tian, H. Chem. Soc. Rev. 2015, 44, 5200.  doi: 10.1039/C5CS00234F

    37. [37]

      Faller, P.; Hureau, C.; Berthoumieu, O. Inorg. Chem. 2013, 52, 12193.  doi: 10.1021/ic4003059

    38. [38]

      Ren, X.; Zou, Q.; Yuan, C.; Chang, R.; Xing, R.; Yan, X. Angew. Chem., Int. Ed. 2019, 58, 5872.  doi: 10.1002/anie.201814575

  • 加载中
    1. [1]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    4. [4]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    5. [5]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    11. [11]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    12. [12]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Zhenghua ZHAOQin ZHANGYufeng LIUZifa SHIJinzhong GU . Syntheses, crystal structures, catalytic and anti-wear properties of nickel(Ⅱ) and zinc(Ⅱ) coordination polymers based on 5-(2-carboxyphenyl)nicotinic acid. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 621-628. doi: 10.11862/CJIC.20230342

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(20)
  • Abstract views(831)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return