Citation: Guo Wenjuan, Yu Jie, Dai Zhao, Hou Weizhao. A New Method for Enriching baicalin in Scutellaria baicalensis Georgi by Metal Organic Framework Material ZIF-8[J]. Acta Chimica Sinica, ;2019, 77(11): 1203-1210. doi: 10.6023/A19080316 shu

A New Method for Enriching baicalin in Scutellaria baicalensis Georgi by Metal Organic Framework Material ZIF-8

  • Corresponding author: Guo Wenjuan, guowenjuan@tjpu.edu.cn
  • Received Date: 29 August 2019
    Available Online: 21 November 2019

Figures(12)

  • This work aims to explore a new method for the efficient enrichment of baicalin in Scutellaria baicalensis Georgi by using metal organic frameworks (MOFs) materials, and to open up new applications for MOFs in the adsorption direction. The zeolitic imidazolate framework-8 (ZIF-8) was synthesized by solvothermal method and characterized by structure to ensure its accurate synthesis. Baicalin was extracted from Scutellaria baicalinsis Georgi by ethanol extraction and acid precipitation method. The ZIF-8 was used to carry out the static adsorption experiment on the crude extract of Radix Scutellariae. After the adsorption equilibrium was reached, the mixture was centrifuged, and the residual concentration of baicalin was detected by high performance liquid chromatography method (HPLC). The recovered saturated adsorbed ZIF-8 material was washed with water and dried, and the phosphate buffered saline (PBS) solution of pH 6.8 was used as a desorption solution, and the desorption was performed by shaking. The content of baicalin in the desorbed solution was determined by HPLC to calculate the desorption rate and achieve the purpose of adsorbent recovery. In the adsorbing process, the effects of adsorbent dosage, pH and adsorbate concentration of the crude extract of Radix Scutellariae were also optimized, and the response surface test (RSM) was performed using Design Expert software to obtain optimal adsorption conditions. Under these conditions, the adsorption rate of ZIF-8 to baicalin in Radix Scutellariae was as high as 98.22%, and the adsorption effect was not significant on other components in Radix Scutellariae. The desorption rate of ZIF-8 adsorbed baicalin in pH 6.8 solution was 62.46%, and the purity of baicalin increased from 21.55% before adsorption to 64.27% after desorption, and ZIF-8 had good stability before and after adsorption, and the recovery rate reached 83.50%. Therefore, ZIF-8 has potential application value in the adsorption and purification of baicalin. The adsorption law and mechanism of ZIF-8 on baicalin were studied:The adsorption of baicalin on ZIF-8 accorded with the quasi-second-order kinetic equation, and the equilibrium adsorption data accorded with the Langmuir adsorption isotherm model.
  • 加载中
    1. [1]

      Farha, O. K.; Hupp, J. T. Acc. Chem. Res. 2010, 43, 1166.  doi: 10.1021/ar1000617

    2. [2]

      Elsaidi, S. K.; Mohamed, M. H.; Banerjee, D.; Thallapally, P. K. Coord. Chem. Rev. 2017, 358, 125.

    3. [3]

      Yang, T.; Cui, Y. N.; Chen, H. Y.; Li, W. H. Acta Chim. Sinica 2017, 75, 339(in Chinese).
       

    4. [4]

      Zhang, H.; Li, G. L.; Zhang, K. G.; Liao, C. Y. Acta Chim. Sinica 2017, 75, 841(in Chinese).
       

    5. [5]

      Cheon, Y. E.; Park, J.; Suh, M. P. Chem. Commun. 2009, 36, 5436.
       

    6. [6]

      Baa, E.; Watkins, G. M.; Krause, R. W.; Tantoh, D. N. Chin. J. Chem. 2019, 37, 387.

    7. [7]

      Pang, C. M.; Luo, S. H.; Hao, Z. F.; Gao, J.; Huang, Z. H.; Yu, J. H.; Yu, S. M.; Wang, Z. Y. Chin. J. Org. Chem. 2018, 38, 2606(in Chinese).
       

    8. [8]

      Tang, Y. Z.; Huang, H. L.; Peng, Y. G.; Ruan, Q. Q.; Wang, K. K.; Yi, P. D.; Liu, D. H.; Zhong, C. L. Chin. J. Chem. 2017, 35, 1091.  doi: 10.1002/cjoc.201600876

    9. [9]

      Wu, Z. M.; Shi, Y.; Li, C. Y.; Niu, D. Y.; Chu, Q.; Xiong, W.; Li, X. Y. Acta Chim. Sinica 2019, 77, 758(in Chinese).
       

    10. [10]

      Guo, X. L.; Chen, X.; Su, D. S.; Liang, C. H. Acta Chim. Sinica 2018, 76, 22(in Chinese).  doi: 10.3866/PKU.WHXB201706302
       

    11. [11]

      Yang, X. P.; Guo, X. X.; Zhang, C. H.; Wang, X. P.; Yang, Y.; Li, Y. W. Acta Chim. Sinica 2017, 75, 360(in Chinese).
       

    12. [12]

      Chouhan, A.; Pilet, G.; Daniele, S.; Pandey, A. Chin. J. Chem. 2017, 35, 209.  doi: 10.1002/cjoc.201600685

    13. [13]

      Zhang, W. Q.; Li, Q. Y.; Yang, X. Y.; Ma, Z.; Wang, H. H.; Wang, X. J. Acta Chim. Sinica 2017, 75, 80(in Chinese).  doi: 10.3866/PKU.WHXB201607293
       

    14. [14]

      Mohamedali, M.; Ibrahim, H.; Henni, A. Chem. Eng. J. 2018, 334, 817.  doi: 10.1016/j.cej.2017.10.104

    15. [15]

      Bian, L.; Li, W.; Wei, Z. Z.; Liu, X. W.; Li, S. Acta Chim. Sinica 2018, 76, 303(in Chinese)  doi: 10.3866/PKU.WHXB201708302
       

    16. [16]

      Massoudinejad, M.; Ghaderpoori, M.; Shahsavani, A.; Amini, M. M. J. Mol. Liq. 2016, 221, 279.  doi: 10.1016/j.molliq.2016.05.087

    17. [17]

      Chen, Z. Y.; Liu, J. W.; Cui, H.; Zhang, L.; Su, C. Y. Acta Chim. Sinica 2019, 77, 242(in Chinese).  doi: 10.3969/j.issn.0253-2409.2019.02.014
       

    18. [18]

      Li, Y.; Zou, B.; Xiao, A. S.; Zhang, H. X. Chin. J. Chem. 2017, 35, 1501.  doi: 10.1002/cjoc.201700151

    19. [19]

      Hasan, Z.; Jhung, S. H. J. Hazard. Mater. 2015, 283, 329.  doi: 10.1016/j.jhazmat.2014.09.046

    20. [20]

      Pi, Y. H.; Li, X. Y.; Xia, Q. B.; Wu, J. L.; Li, Y. W.; Xiao, J.; Li, Z. Chem. Eng. J. 2018, 337, 351.  doi: 10.1016/j.cej.2017.12.092

    21. [21]

      Dai, J.; Xiao, X.; Duan, S. X.; Liu, J.; He, J.; Lei, J. D.; Wang, L. Y. Chem. Eng. J. 2018, 331, 64.  doi: 10.1016/j.cej.2017.08.090

    22. [22]

      Massoudinejad, M.; Ghaderpoori, M.; Shahsavani, A.; Jafari, A.; Kamarehie, B.; Ghaderpoury, A.; Amini, M. M. J. Mol. Liq. 2018, 255, 263.  doi: 10.1016/j.molliq.2018.01.163

    23. [23]

      Li, J.; Wu, Y. N.; Li, Z. H.; Zhang, B. R.; Zhu, M.; Hu, X.; Zhang, Y. M.; Li, F. T. J. Phys. Chem. C 2014, 118, 47.
       

    24. [24]

      Sun, X.; Hu, C. Q.; Huang, X. D.; Dong, J. C. Chin. J. Org. Chem. 2003, 23, 81(in Chinese).
       

    25. [25]

      Chou, T. C.; Chang, L. P.; Li, C. Y.; Wong, C. S.; Yang, S. P. Anesth. Analg. 2003, 97, 1724.  doi: 10.1213/01.ANE.0000087066.71572.3F

    26. [26]

      Dinda, B.; Dinda, S.; DasSharma, S.; Banik, R.; Chakraborty, A.; Dinda, M. Eur. J. Med. Chem. 2017, 131, 68.  doi: 10.1016/j.ejmech.2017.03.004

    27. [27]

      Li-Weber, M. Cancer Treat. Rev. 2009, 35, 57.  doi: 10.1016/j.ctrv.2008.09.005

    28. [28]

      Ikemoto, S.; Sugimura, K.; Yoshida, N.; Yasumoto, R.; Wada, S.; Yamamoto, K.; Kishimoto, T. J. Urol. 2000, 55, 951.  doi: 10.1016/S0090-4295(00)00467-2

    29. [29]

      Wu, J. A.; Attele, A. S.; Zhang, L.; Yuan, C. S. Am. J. Chin. Med. 2001, 29, 69.  doi: 10.1142/S0192415X01000083

    30. [30]

      Liang, W.; Huang, X. B.; Chen, W. Q. Aging Dis. 2017, 8, 850.  doi: 10.14336/AD.2017.0829

    31. [31]

      Mou, X. L.; Zhang, W. P.; Chen, Z. L. J. Appl. Polym. Sci. 2013, 130, 1873.  doi: 10.1002/app.39410

    32. [32]

      Wang, H.; Ma, X. D.; Cheng, Q. B.; Wang, L.; Zhang, L. W. Molecules 2018, 23, 3233.  doi: 10.3390/molecules23123233

    33. [33]

      Srinivas, N. R. Xenobiotica 2010, 40, 357.  doi: 10.3109/00498251003663724

    34. [34]

      Huang, X. C.; Lin, Y. Y.; Zhang, J. P.; Chen, X. M. Angew. Chem., Int. Ed. 2005, 45, 1557.

    35. [35]

      Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2006, 103, 10186.  doi: 10.1073/pnas.0602439103

    36. [36]

      Yao, J. F.; Wang, H. T. Chem. Soc. Rev. 2014, 43, 4470.  doi: 10.1039/C3CS60480B

    37. [37]

      Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O'Keeffe, M.; Yaghi, O. M. Acc. Chem. Res. 2010, 43, 58.  doi: 10.1021/ar900116g

    38. [38]

      Lai, Z. P. Curr. Opin. Chem. Eng. 2018, 20, 78.  doi: 10.1016/j.coche.2018.03.002

    39. [39]

      Pan, Y. C.; Liu, Y. Y.; Zeng, G. F.; Zhao, L.; Lai, Z. P. Chem. Commun. 2011, 47, 2071.  doi: 10.1039/c0cc05002d

    40. [40]

      The Pharmacopoeia Commission of PRC, The Pharmacopoeia of the People's Republic of China, Part I, Chemical Industry Publishing Press, Beijing, China, 2015, pp. 301~302(in Chinese).

    41. [41]

      Li, W. S.; Chen, X. Chinese Traditional and Herbal Drugs 2000, 31, 107(in Chinese).  doi: 10.3321/j.issn:0253-2670.2000.02.016

    42. [42]

      Dai, Q.; Lei, X. R.; Yang, J. H.; Cheng, Q.; Gao, C.; Li, H. Acta Chim. Sinica 2009, 67, 2363(in Chinese).  doi: 10.3321/j.issn:0251-0790.2009.12.007

    43. [43]

      Ni, Z. M.; Wang, Q. Q.; Yao, P.; Liu, X. M.; Li, Y. Acta Chim. Sinica 2011, 69, 529(in Chinese).
       

    44. [44]

      Fan, C. H.; Zhang, Y. C.; Zhang, Y. Acta Chim. Sinica 2010, 68, 2175(in Chinese).
       

    45. [45]

      Cao, X. Y.; Li, L.; Chen, H. Acta Chim. Sinica 2010, 68, 1461(in Chinese).
       

    46. [46]

      Venna, S. R.; Carreon, M. A. J. Am. Chem. Soc. 2010, 132, 76.  doi: 10.1021/ja909263x

    47. [47]

      Xu, Y. L.; Li, X.; Lin, Y. Q.; Malde, C.; Wang, R. J. Membr. Sci. 2019, 585, 238.  doi: 10.1016/j.memsci.2019.05.042

  • 加载中
    1. [1]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    2. [2]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    5. [5]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    9. [9]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    18. [18]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

Metrics
  • PDF Downloads(13)
  • Abstract views(1757)
  • HTML views(305)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return