Citation: Geng Huimin, Cui Jiwei, Hao Jingcheng. Mussel-Inspired Hydrogels for Tissue Healing[J]. Acta Chimica Sinica, ;2020, 78(2): 105-113. doi: 10.6023/A19080301 shu

Mussel-Inspired Hydrogels for Tissue Healing

  • Corresponding author: Cui Jiwei, jwcui@sdu.edu.cn Hao Jingcheng, jhao@sdu.edu.cn
  • Received Date: 11 January 2020
    Available Online: 13 February 2020

    Fund Project: the Natural Science Foundation of Shandong Province ZR2018ZA0547the National Natural Science Foundation of China 21872085Project supported by the National Natural Science Foundation of China (Nos. 21603120, 21872085) and the Natural Science Foundation of Shandong Province (Nos. ZR2018ZA0547, ZR2019BB056)the National Natural Science Foundation of China 21603120the Natural Science Foundation of Shandong Province ZR2019BB056

Figures(8)

  • Surgical sutures, staples and clips have been widely used for wound closure, tissue reconstruction and tissue adhesives are one of the versatile alternatives especially for friable tissues. Some synthetic and semisynthetic tissue adhesives are available elsewhere. However, there are some drawbacks, such as poor adhesion on wet substrates and potential toxicity, for the reported tissue adhesives. Fibrin glues as biological tissue adhesives are effective hemostatic agents while presenting relatively weak tensile and adhesion strengths and being expensive. Biomimetic adhesives as tissue adhesives, hemostatic agents, or tissue sealants have attracted great attention for clinical operations in last three decades. However, engineering of bio-adhesive materials with good water resistance, high adhesive strength, and good biocompatibility and multi-functionality remains a challenge for tissue healing. Since the first report of mussel-inspired surface chemistry for functional coatings of polydopamine by the Messersmith group in 2007, materials containing plenty of phenolic hydroxyl groups have been widely used in medical applications, food, cosmetics, water treatment and so on, due to the antioxidant, antibacterial, and anti-inflammatory effects of polyphenols. Polyphenol-based hydrogel is an ideal bio-adhesive material due to its good tissue adhesion even on wet substrates, hemostatic and antimicrobial capabilities. Moreover, these hydrogels with porous structures have similar physiochemical properties to that of natural extracellular matrix and different shapes from nanometer to centimeter scales can be remolded to seal irregular defects on tissues. In this review, we report the recent progress of the engineering of polyphenol-synthetic polymer hydrogels, polyphenol-biomacromolecule hydrogels, polyphenol-inorganic nanocomposite hydrogels, and polydopamine nanoparticle composite hydrogels, as well as their applications of tissue adhesives, hemostasis, antimicrobials for wound closure and tissue regeneration. The challenges as well as prospects for future development of polyphenol-based tissue adhesives, sealants, hemostatic agents are also summarized and discussed, which is helpful to promote the next generation of tissue adhesives for biomedical applications.
  • 加载中
    1. [1]

      Zhu, W.; Chuah, Y. J.; Wang, D. A. Acta Biomater. 2018, 74, 1.  doi: 10.1016/j.actbio.2018.04.034

    2. [2]

      Duarte, A. P.; Coelho, J. F.; Bordado, J. C.; Cidade, M. T.; Gil, M. H. Prog. Polym. Sci. 2012, 37, 1031.  doi: 10.1016/j.progpolymsci.2011.12.003

    3. [3]

      Bré, L. P.; Zheng, Y.; Pêgo, A. P.; Wang, W. Biomater. Sci. 2013, 1, 239.  doi: 10.1039/C2BM00121G

    4. [4]

      Liu, Z.; Meyers, M. A.; Zhang, Z.; Ritchie, R. O. Prog. Mater. Sci. 2017, 88, 467.  doi: 10.1016/j.pmatsci.2017.04.013

    5. [5]

      Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Science 2007, 318, 426.  doi: 10.1126/science.1147241

    6. [6]

      Harrington, M. J.; Masic, A.; Holten-Andersen, N.; Waite, J. H.; Fratzl, P. Science 2010, 328, 216.  doi: 10.1126/science.1181044

    7. [7]

      Maier, G. P.; Rapp, M. V.; Waite, J. H.; Israelachvili, J. N.; Butler, A. Science 2015, 348, 628.  doi: 10.1126/science.348.6235.628

    8. [8]

      Rahim, M. A.; Kristufek, S. L.; Pan, S.; Richardson, J. J.; Caruso, F. Angew. Chem., Int. Ed. 2019, 58, 1904.  doi: 10.1002/anie.201807804

    9. [9]

      Liu, Y.; Ai, K.; Lu, L. Chem. Rev. 2014, 114, 5057.  doi: 10.1021/cr400407a

    10. [10]

      Lee, H.; Lee, B. P.; Messersmith, P. B. Nature 2007, 448, 338.  doi: 10.1038/nature05968

    11. [11]

      Lee, H. D., S.; Miller, W.; Messersmith, P. Science 2011, 318, 5.

    12. [12]

      Dai, Q.; Geng, H.; Yu, Q.; Hao, J.; Cui, J. Theranostics 2019, 9, 3170.  doi: 10.7150/thno.31847

    13. [13]

      Patil, N.; Jérôme, C.; Detrembleur, C. Prog. Polym. Sci. 2018, 82, 34.  doi: 10.1016/j.progpolymsci.2018.04.002

    14. [14]

      Ejima, H. R., J.; Liang, K.; Best, J.; Koeverden, M.; Such, G.; Cui, J.; Caruso, F. Science 2013, 341, 5.

    15. [15]

      Faure, E.; Falentin-Daudré, C.; Jérôme, C.; Lyskawa, J.; Fournier, D.; Woisel, P.; Detrembleur, C. Prog. Polym. Sci. 2013, 38, 236.  doi: 10.1016/j.progpolymsci.2012.06.004

    16. [16]

      Shukla, A.; Fang, J. C.; Puranam, S.; Jensen, F. R.; Hammond, P. T. Adv. Mater. 2012, 24, 492.  doi: 10.1002/adma.201103794

    17. [17]

      Chen, J.; Cheng, W.; Chen, S.; Xu, W.; Lin, J.; Liu, H.; Chen, Q. Nanoscale 2018, 10, 22818.  doi: 10.1039/C8NR05882B

    18. [18]

      Gopalakrishnan, L.; Ramana, L. N.; Sethuraman, S.; Krishnan, U. M. Carbohyd. Polym. 2014, 111, 215.  doi: 10.1016/j.carbpol.2014.03.093

    19. [19]

      Scalbert, A. Phytochemistry 1991, 30, 3875.  doi: 10.1016/0031-9422(91)83426-L

    20. [20]

      Choi, Y. S.; Kang, H.; Kim, D. G.; Cha, S. H.; Lee, J. C. ACS Appl. Mater. Interfaces 2014, 6, 21297.  doi: 10.1021/am506263s

    21. [21]

      Qi, C.; Fu, L.-H.; Xu, H.; Wang, T.-F.; Lin, J.; Huang, P. Sci. China Chem. 2019, 62, 162.  doi: 10.1007/s11426-018-9392-6

    22. [22]

      Wang, X.; Sheng, J.; Yang, M. Chinese Chem. Lett. 2019, 30, 533.  doi: 10.1016/j.cclet.2018.10.010

    23. [23]

      Ghobril, C.; Grinstaff, M. W. Chem. Soc. Rev. 2015, 44, 1820.  doi: 10.1039/C4CS00332B

    24. [24]

      Zhang, K.; Zhang, F.; Song, Y.; Fan, J. B.; Wang, S. Chin. J. Chem. 2017, 35, 811.  doi: 10.1002/cjoc.201600778

    25. [25]

      Zhang, H.; Zhao, T.; Newland, B.; Liu, W.; Wang, W.; Wang, W. Prog. Polym. Sci. 2018, 78, 47.  doi: 10.1016/j.progpolymsci.2017.09.002

    26. [26]

      Han, L.; Yan, L.; Wang, K.; Fang, L.; Zhang, H.; Tang, Y.; Ding, Y.; Weng, L. T.; Xu, J.; Weng, J.; Liu, Y.; Ren, F.; Lu, X. NPG Asia Mater. 2017, 9, e372.  doi: 10.1038/am.2017.33

    27. [27]

      Huang, K.; Lee, B. P.; Ingram, D. R.; Messersmith, P. B. Biomacromolecules 2002, 3, 397.  doi: 10.1021/bm015650p

    28. [28]

      Krogsgaard, M.; Andersen, A.; Birkedal, H. Chem. Commun. 2014, 50, 13278.  doi: 10.1039/C4CC05293E

    29. [29]

      North, M. A.; Del, Grosso, C. A.; Wilker, J. J. ACS Appl. Mater. Interfaces 2017, 9, 7866.  doi: 10.1021/acsami.7b00270

    30. [30]

      Mu, Y.; Wu, X.; Pei, D.; Wu, Z.; Zhang, C.; Zhou, D.; Wan, X. ACS Biomater. Sci. Eng. 2017, 3, 3133.  doi: 10.1021/acsbiomaterials.7b00673

    31. [31]

      Lee, B. P.; Dalsin, J. L.; Messersmith, P. B. Biomacromolecules 2002, 3, 1038.  doi: 10.1021/bm025546n

    32. [32]

      Burke, S. A.; Ritter-Jones, M.; Lee, B. P.; Messersmith, P. B. Biomed. Mater. 2007, 2, 203.  doi: 10.1088/1748-6041/2/4/001

    33. [33]

      Bilic, G.; Brubaker, C.; Messersmith, P. B.; Mallik, A. S.; Quinn, T. M.; Haller, C.; Done, E.; Gucciardo, L.; Zeisberger, S. M.; Zimmermann, R.; Deprest, J.; Zisch, A. H. Am. J. Obstet. Gynecol. 2010, 202, 85.

    34. [34]

      Brubaker, C. E.; Kissler, H.; Wang, L. J.; Kaufman, D. B.; Messersmith, P. B. Biomaterials 2010, 31, 420.  doi: 10.1016/j.biomaterials.2009.09.062

    35. [35]

      Mehdizadeh, M.; Weng, H.; Gyawali, D.; Tang, L.; Yang, J. Biomaterials 2012, 33, 7972..  doi: 10.1016/j.biomaterials.2012.07.055

    36. [36]

      Brubaker, C. E.; Messersmith, P. B. Biomacromolecules 2011, 12, 4326.  doi: 10.1021/bm201261d

    37. [37]

      Mou, C.; Ali, F.; Malaviya, A.; Bettinger, C. J. J. Mater. Chem. B 2019, 7, 1690.  doi: 10.1039/C8TB02854K

    38. [38]

      Holten-Andersen, N.; Harrington, M. J.; Birkedal, H.; Lee, B. P.; Messersmith, P. B.; Lee, K. Y.; Waite, J. H. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 2651.  doi: 10.1073/pnas.1015862108

    39. [39]

      He, L.; Fullenkamp, D. E.; Rivera, J. G.; Messersmith, P. B. Chem. Commun. 2011, 47, 7497.  doi: 10.1039/c1cc11928a

    40. [40]

      Guo, J.; Sun, W.; Kim, J. P.; Lu, X.; Li, Q.; Lin, M.; Mrowczynski, O.; Rizk, E. B.; Cheng, J.; Qian, G.; Yang, J. Acta Biomater. 2018, 72, 35.  doi: 10.1016/j.actbio.2018.03.008

    41. [41]

      Li, N.; Yang, X.; Liu, W.; Xi, G.; Wang, M.; Liang, B.; Ma, Z.; Feng, Y.; Chen, H.; Shi, C. Macromol. Biosci. 2018, 18, e1800209.  doi: 10.1002/mabi.201800209

    42. [42]

      Wang, C.; Zhou, H.; Niu, H.; Ma, X.; Yuan, Y.; Hong, H.; Liu, C. Biomater. Sci. 2018, 6, 3318.  doi: 10.1039/C8BM00837J

    43. [43]

      Erel-Unal, I.; Sukhishvili, S. A. Macromolecules 2008, 41, 3962.  doi: 10.1021/ma800186q

    44. [44]

      Kim, K.; Shin, M.; Koh, M. Y.; Ryu, J. H.; Lee, M. S.; Hong, S.; Lee, H. Adv. Funct. Mater. 2015, 25, 2402.  doi: 10.1002/adfm.201500034

    45. [45]

      Xu, R.; Ma, S.; Lin, P.; Yu, B.; Zhou, F.; Liu, W. ACS Appl. Mater. Interfaces 2018, 10, 7593.  doi: 10.1021/acsami.7b04290

    46. [46]

      Nam, H. G.; Nam, M. G.; Yoo, P. J.; Kim, J. Soft Matter 2019, 15, 785.  doi: 10.1039/C8SM02144A

    47. [47]

      Zhou, L.; Fan, L.; Yi, X.; Zhou, Z.; Liu, C.; Fu, R.; Dai, C.; Wang, Z.; Chen, X.; Yu, P.; Chen, D.; Tan, G.; Wang, Q.; Ning, C. ACS Nano 2018, 12, 10957.  doi: 10.1021/acsnano.8b04609

    48. [48]

      Fan, H.; Wang, L.; Feng, X.; Bu, Y.; Wu, D.; Jin, Z. Macromolecules 2017, 50, 666.  doi: 10.1021/acs.macromol.6b02106

    49. [49]

      Fan, H.; Wang, J.; Zhang, Q.; Jin, Z. ACS Omega 2017, 2, 6668.  doi: 10.1021/acsomega.7b01067

    50. [50]

      Zheng, L. Y.; Shi, J. M.; Chi, Y. H. Macromol. Chem. Phys. 2018, 219, 1800234.  doi: 10.1002/macp.201800234

    51. [51]

      Sahiner, N.; Sagbas, S.; Sahiner, M.; Silan, C.; Aktas, N.; Turk, M. Int. J. Biol. Macromol. 2016, 82, 150.  doi: 10.1016/j.ijbiomac.2015.10.057

    52. [52]

      Sahiner, N.; Sagbas, S.; Aktas, N. Polym. Degrad. Stabil. 2016, 129, 96.  doi: 10.1016/j.polymdegradstab.2016.04.010

    53. [53]

      Hong, S. H.; Shin, M.; Lee, J.; Ryu, J. H.; Lee, S.; Yang, J. W.; Kim, W. D.; Lee, H. Adv. Healthcare Mater. 2016, 5, 75.  doi: 10.1002/adhm.201400833

    54. [54]

      Shao, C.; Meng, L.; Wang, M.; Cui, C.; Wang, B.; Han, C. R.; Xu, F.; Yang, J. ACS Appl. Mater. Interfaces 2019, 11, 5885.  doi: 10.1021/acsami.8b21588

    55. [55]

      Ryu, J. H.; Hong, S.; Lee, H. Acta Biomater. 2015, 27, 101.  doi: 10.1016/j.actbio.2015.08.043

    56. [56]

      Zhu, W.; Iqbal, J.; Wang. D. A. J. Mater. Chem. B 2019, 7, 1741.  doi: 10.1039/C8TB01990H

    57. [57]

      Levengood, S. L.; Zhang, M. J. Mater. Chem. B 2014, 2, 3161.  doi: 10.1039/c4tb00027g

    58. [58]

      Ryu, J. H.; Lee, Y.; Kong, W. H.; Kim, T. G.; Park, T. G.; Lee, H. Biomacromolecules 2011, 12, 2653.  doi: 10.1021/bm200464x

    59. [59]

      Shin, M.; Park, S. G.; Oh, B. C.; Kim, K.; Jo, S.; Lee, M. S.; Oh, S. S.; Hong, S. H.; Shin, E. C.; Kim, K. S.; Kang, S. W.; Lee, H. Nat. Mater. 2017, 16, 147.  doi: 10.1038/nmat4758

    60. [60]

      Shin, M.; Ryu, J. H.; Kim, K.; Kim, M. J.; Jo, S.; Lee, M. S.; Lee, D. Y.; Lee, H. ACS Biomater. Sci. Eng. 2018, 4, 2314.  doi: 10.1021/acsbiomaterials.8b00451

    61. [61]

      Zhu, W.; Peck, Y.; Iqbal, J.; Wang, D. A. Biomaterials 2017, 147, 99.  doi: 10.1016/j.biomaterials.2017.09.016

    62. [62]

      Natarajan, V.; Krithica, N.; Madhan, B.; Sehgal, P. K. J. Biomed. Mater. Res. B 2013, 101, 560.

    63. [63]

      Fan, C.; Fu, J.; Zhu, W.; Wang, D. A. Acta Biomater. 2016, 33, 51.  doi: 10.1016/j.actbio.2016.02.003

    64. [64]

      Lu, D.; Wang, H.; Li, T. E.; Li, Y.; Wang, X.; Niu, P.; Guo, H.; Sun, S.; Wang, X.; Guan, X.; Ma, H.; Lei, Z. Chem. Mater. 2017, 29, 5493.  doi: 10.1021/acs.chemmater.7b00255

    65. [65]

      Wang, R.; Li, J.; Chen, W.; Xu, T.; Yun, S.; Xu, Z.; Xu, Z.; Sato, T.; Chi, B.; Xu, H. Adv. Funct. Mater. 2017, 27, 1604894.  doi: 10.1002/adfm.201604894

    66. [66]

      Han, X.; Meng, G.; Wang, Q.; Cui, L.; Wang, H.; Wu, J.; Liu, Z.; Guo, X. J. Biomater. Appl. 2019, 33, 915.  doi: 10.1177/0885328218810552

    67. [67]

      Shin, M.; Ryu, J. H.; Park, J. P.; Kim, K.; Yang, J. W.; Lee, H. Adv. Funct. Mater. 2015, 25, 1270.  doi: 10.1002/adfm.201403992

    68. [68]

      Schexnailder, P.; Schmidt, G. Colloid Polym. Sci. 2008, 287, 1.

    69. [69]

      Thoniyot, P.; Tan, M. J.; Karim, A. A.; Young, D. J.; Loh, X. J. Adv. Sci. 2015, 2, 1400010.  doi: 10.1002/advs.201400010

    70. [70]

      Rose, S.; Prevoteau, A.; Elziere, P.; Hourdet, D.; Marcellan, A.; Leibler, L. Nature 2014, 505, 382.  doi: 10.1038/nature12806

    71. [71]

      Li, L.; Smitthipong, W.; Zeng, H. Polym. Chem. 2015, 6, 353.  doi: 10.1039/C4PY01415D

    72. [72]

      Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L. T.; Zhang, H.; Tang, Y.; Ren, F.; Zhao, C.; Sun, G.; Liang, R.; Li, Z. ACS Nano 2017, 11, 2561.  doi: 10.1021/acsnano.6b05318

    73. [73]

      Ding, X.; Vegesna, G. K.; Meng, H.; Lee, B. P.; Winter, A. Macromol. Chem. Phys. 2015, 216, 1109.  doi: 10.1002/macp.201500010

    74. [74]

      Liu, Y.; Meng, H.; Qian, Z.; Fan, N.; Choi, W.; Zhao, F.; Lee, B. P. Angew. Chem. Int. Ed. 2017, 56, 4224.  doi: 10.1002/anie.201700628

    75. [75]

      Lynge, M. E.; Schattling, P.; Stadler, B. Nanomedicine 2015, 10, 2725.  doi: 10.2217/nnm.15.89

    76. [76]

      Wang, X.; Wang, C.; Wang, X.; Wang, Y.; Zhang, Q.; Cheng, Y. Chem. Mater. 2017, 29, 1370.  doi: 10.1021/acs.chemmater.6b05192

    77. [77]

      Wang, C.; Zhang, Q.; Wang, X.; Chang, H.; Zhang, S.; Tang, Y.; Xu, J.; Qi, R.; Cheng, Y. Angew. Chem. Int. Ed. 2017, 56, 6767.  doi: 10.1002/anie.201700968

    78. [78]

      Hu, W.; Lu, S.; Zhang, Z.; Zhu, L.; Wen, Y.; Zhang, T.; Ji, Z. Biomater. Sci. 2019, 7, 1323.  doi: 10.1039/C8BM01198B

    79. [79]

      Han, L.; Zhang, Y.; Lu, X.; Wang, K.; Wang, Z.; Zhang, H. ACS Appl. Mater. Interfaces 2016, 8, 29088.  doi: 10.1021/acsami.6b11043

    80. [80]

      Zhu, S.; Gu, Z.; Xiong, S.; An, Y.; Liu, Y.; Yin, T.; You, J.; Hu, Y. RSC Adv. 2016, 6, 66180.  doi: 10.1039/C6RA12306F

    81. [81]

      Tang, P.; Han, L.; Li, P.; Jia, Z.; Wang, K.; Zhang, H.; Tan, H.; Guo, T.; Lu, X. ACS Appl. Mater. Interfaces 2019, 11, 7703.  doi: 10.1021/acsami.8b18931

    82. [82]

      Gao, G.; Jiang, Y. W.; Jia, H. R.; Wu, F. G. Biomaterials 2019, 188, 83.  doi: 10.1016/j.biomaterials.2018.09.045

    83. [83]

      Jing, X.; Mi, H. Y.; Napiwocki, B. N.; Peng, X. F.; Turng, L. S. Carbon 2017, 125, 557.  doi: 10.1016/j.carbon.2017.09.071

    84. [84]

      Han, L.; Lu, X.; Wang, M.; Gan, D.; Deng, W.; Wang, K.; Fang, L.; Liu, K.; Chan, C. W.; Tang, Y.; Weng, L. T.; Yuan, H. Small 2017, 13, 1601916.  doi: 10.1002/smll.201601916

    85. [85]

      Chen, Q.; Wang, C.; Zhang, X.; Chen, G.; Hu, Q.; Li, H.; Wang, J.; Wen, D.; Zhang, Y.; Lu, Y.; Yang, G.; Jiang, C.; Wang, J.; Dotti, G.; Gu, Z. Nat. Nanotechnol. 2019, 14, 89.  doi: 10.1038/s41565-018-0319-4

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    3. [3]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    4. [4]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(128)
  • Abstract views(3363)
  • HTML views(1286)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return