Citation: Xiong Yingying, Chen Yunlong, Ju Huangxian. Glycan Analysis in Cellular Secretion[J]. Acta Chimica Sinica, ;2019, 77(12): 1221-1229. doi: 10.6023/A19080299 shu

Glycan Analysis in Cellular Secretion

  • Corresponding author: Ju Huangxian, hxju@nju.edu.cn
  • Received Date: 10 August 2019
    Available Online: 9 December 2019

    Fund Project: the National Natural Science Foundation of China 21635005Project supported by the National Natural Science Foundation of China (Nos. 21635005, 21827812, 21890741)the National Natural Science Foundation of China 21890741the National Natural Science Foundation of China 21827812

Figures(9)

  • Glycans are important components of mammalian cells, which exists extensively in eukaryocytes. Glycans are mainly consisted of monosaccharides, oligosaccharides and polysaccharides. They are connected to proteins or lipids through glycosylation, which constitute glycoconjugates. Glycosylation is one of the most important post-modifications of proteins, which mediate a wide variety of biological processes, including cell growth and differentiation, cell-cell communication, immune response, pathogen interaction, and intracellular signaling events. Because of the complex marshalling sequences, diversiform connection types and multiple branch structures, glycans are endowed with various structures. The diversity of glycan structure brings glycoconjugates with abundant information of cellular function. Among all the factors, human diseases act as an important ingredient which can induce unnatural glycosylation process. Glycoconjugates have been chosen as an efficient biomarker in the area of disease surveillance and targeted drug therapy. Thus, analysis of secreted glycans is of great importance for monitoring the states of cells or diseases in clinical diagnosis and treatment. Based on recent research of extracellular glycans, this review introduces the types of glycans in cellular secretion and their biological functions or significances, summarizes the identification or detection techniques of the secreted glycans, including lectin identifications, chemical covalent identifications and glycan metabolic marker techniques. Detection technologies of cell secretory glycan have been emphatically introduced in this review, which mainly contain spectrophotometry techniques, chromatography techniques, mass-spectrography techniques, fluorescence methods, electrochemical processes, enzyme linked immunosorbent assay techniques and western blot methods. After summarizing the progresses in this field during the past few decades, we outlook the future development of the analysis of cell secretory glycans. As far as we concern, in situ identification and quantitative detection will be the most challenging but meaningful topic of this field. We hope this review can be provided as a useful guidance for the investigating of glycosylation or glycan-related biological processes.
  • 加载中
    1. [1]

      Xiao, H. P.; Suttapitugsakul, S.; Sun, F. X.; Wu, R. H. Acc. Chem. Res. 2018, 51, 1796.  doi: 10.1021/acs.accounts.8b00200

    2. [2]

      Zhang, L.-X.; Du, X.-F.; Zeng, Y. Acta Chim. Sinica 2016, 74, 149 (in Chinese).  doi: 10.7503/cjcu20150696
       

    3. [3]

      Krishnamoorthy, L.; Mahal, L. K. ACS Chem. Biol. 2009, 4, 715.  doi: 10.1021/cb900103n

    4. [4]

      Pinho, S. S.; Reis, C. A. Nat. Rev. Cancer 2015, 15, 540.  doi: 10.1038/nrc3982

    5. [5]

      Brockhausen, I. BBA-Gen. Subjects 1999, 1473, 67.  doi: 10.1016/S0304-4165(99)00170-1

    6. [6]

      Clerc, F.; Reiding, K. R.; Jansen, B. C.; Kammeijer, G. S. M.; Bondt, A.; Wuhrer, M. Glycoconjugate J. 2016, 33, 309.  doi: 10.1007/s10719-015-9626-2

    7. [7]

      Zhang, Z. J.; Wuhrer, M.; Holst, S. Glycoconjugate J. 2018, 35, 139.  doi: 10.1007/s10719-018-9820-0

    8. [8]

      Fuster, M. M.; Esko, J. D. Nat. Rev. Cancer 2005, 5, 526.  doi: 10.1038/nrc1649

    9. [9]

      Rich, J. R.; Withers, S. G. Nat. Chem. Biol. 2009, 5, 206.  doi: 10.1038/nchembio.148

    10. [10]

      Dennis, J. W.; Nabi, I. R.; Demetriou, M. Cell 2009, 139, 1229.  doi: 10.1016/j.cell.2009.12.008

    11. [11]

      Pinho, S. S.; Figueiredo, J.; Cabral, J.; Carvalho, S.; Dourado, J.; Magalhaes, A.; Gartner, F.; Mendonca, A. M.; Isaji, T.; Cu, J. G.; Carneiro, F.; Seruca, R.; Taniguchi, N.; Reis, C. A. BBA-Gen. Subjects 2013, 1830, 2690.  doi: 10.1016/j.bbagen.2012.10.021

    12. [12]

      Zhao, Y. Y.; Sato, Y.; Isaji, T.; Fukuda, T.; Matsumoto, A.; Miyoshi, E.; Gu, J. G.; Taniguchi, N. FEBS J. 2008, 275, 1939.  doi: 10.1111/j.1742-4658.2008.06346.x

    13. [13]

      Takeuchi, H.; Haltiwanger, R. S. Biochem. Biophys. Res. Commun. 2014, 453, 235.  doi: 10.1016/j.bbrc.2014.05.115

    14. [14]

      Boscher, C.; Dennis, J. W.; Nabi, I. R. Curr. Opin. Cell Biol. 2011, 23, 383.  doi: 10.1016/j.ceb.2011.05.001

    15. [15]

      Ju, T. Z.; Otto, V. I.; Cummings, R. D. Angew. Chem., Int. Ed. 2011, 50, 1770.  doi: 10.1002/anie.201002313

    16. [16]

      Gilgunn, S.; Conroy, P. J.; Saldova, R.; Rudd, P. M.; O'Kennedy, R. J. Nat. Rev. Urol. 2013, 10, 99.  doi: 10.1038/nrurol.2012.258

    17. [17]

      Ohtsubo, K.; Marth, J. D. Cell 2006, 126, 855.  doi: 10.1016/j.cell.2006.08.019

    18. [18]

      Kailemia, M. J.; Park, D.; Lebrilla, C. B. Anal. Bioanal. Chem. 2017, 409, 395.  doi: 10.1007/s00216-016-9880-6

    19. [19]

      Adamczyk, B.; Tharmalingam, T.; Rudd, P. M. BBA-Gen. Subjects 2012, 1820, 1347.  doi: 10.1016/j.bbagen.2011.12.001

    20. [20]

      Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Adv. Drug Del. Rev. 2016, 97, 4.  doi: 10.1016/j.addr.2015.11.001

    21. [21]

      Muiznieks, L.; Keeley, F. W. Biochem. Cell Biol. 2010, 88, 392.

    22. [22]

      George, E. L.; Georgeslabouesse, E. N.; Patelking, R. S.; Rayburn, H.; Hynes, R. O. Development 1993, 119, 1079.

    23. [23]

      Aumailley, M.; Bruckner-Tuderman, L.; Carter, W. G.; Deutzmann, R.; Edgar, D.; Ekblom, P.; Engel, J.; Engvall, E.; Hohenester, E.; Jones, J. C. R.; Kleinman, H. K.; Marinkovich, M. P.; Martin, G. R.; Mayer, U.; Meneguzzi, G.; Miner, J. H.; Miyazaki, K.; Patarroyo, M.; Paulsson, M.; Quaranta, V.; Sanes, J. R.; Sasaki, T.; Sekiguchi, K.; Sorokin, L. M.; Talts, J. F.; Tryggvason, K.; Uitto, J.; Virtanen, I.; von der Mark, K.; Wewer, U. M.; Yamada, Y.; Yurchenco, P. D. Matrix Biol. 2005, 24, 326.  doi: 10.1016/j.matbio.2005.05.006

    24. [24]

      Feng, Y. M.; Guo, Y. N.; Li, Y. R.; Tao, J.; Ding, L.; Wu, J.; Ju, H. X. Anal. Chim. Acta 2018, 1039, 108.  doi: 10.1016/j.aca.2018.07.040

    25. [25]

      Kim, S. H.; Turnbull, J.; Guimond, S. J. Endocrinol. 2011, 209, 139.  doi: 10.1530/JOE-10-0377

    26. [26]

      Bonnans, C.; Chou, J.; Werb, Z. Nat. Rev. Mol. Cell Biol. 2014, 15, 786.

    27. [27]

      Varki, A. Trends Mol. Med. 2008, 14, 351.  doi: 10.1016/j.molmed.2008.06.002

    28. [28]

      Wu, J.; Xie, X. L.; Nie, S.; Buckanovich, R. J.; Lubman, D. M. J. Proteome Res. 2013, 12, 3342.  doi: 10.1021/pr400169n

    29. [29]

      Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M. Glycobiology 2007, 17, 1344.  doi: 10.1093/glycob/cwm100

    30. [30]

      Ye, B.; Skates, S.; Mok, S. C.; Horick, N. K.; Rosenberg, H. F.; Vitonis, A.; Edwards, D.; Sluss, P.; Han, W. K.; Berkowitz, R. S.; Cramer, D. W. Clin. Cancer. Res. 2006, 12, 432.  doi: 10.1158/1078-0432.CCR-05-0461

    31. [31]

      Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R. Nat. Biotechnol. 2003, 21, 660.  doi: 10.1038/nbt827

    32. [32]

      Vajaria, B. N.; Patel, K. R.; Begum, R.; Shah, F. D.; Patel, J. B.; Shukla, S. N.; Patel, P. S. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 764.  doi: 10.1016/j.oooo.2013.01.004

    33. [33]

      Theocharis, A. D.; Gialeli, C.; Bouris, P.; Giannopoulou, E.; Skandalis, S. S.; Aletras, A. J.; Iozzo, R. V.; Karamanos, N. K. FEBS J. 2014, 281, 5023.  doi: 10.1111/febs.12927

    34. [34]

      Iozzo, R. V.; Sanderson, R. D. J. Cell. Mol. Med. 2011, 15, 1013.  doi: 10.1111/j.1582-4934.2010.01236.x

    35. [35]

      Chandler, E. M.; Seo, B. R.; Califano, J. P.; Eguiluz, R. C. A.; Lee, J. S.; Yoon, C. J.; Tims, D. T.; Wang, J. X.; Cheng, L.; Mohanan, S.; Buckley, M. R.; Cohen, I.; Nikitin, A. Y.; Williams, R. M.; Gourdon, D.; Reinhart-King, C. A.; Fischbach, C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9786.  doi: 10.1073/pnas.1121160109

    36. [36]

      Durbeej, M. Cell Tissue Res. 2010, 339, 259.  doi: 10.1007/s00441-009-0838-2

    37. [37]

      Hallmann, R.; Horn, N.; Selg, M.; Wendler, O.; Pausch, F.; Sorokin, L. M. Physiol. Rev. 2005, 85, 979.  doi: 10.1152/physrev.00014.2004

    38. [38]

      Arcinas, A.; Yen, T. Y.; Kebebew, E.; Macher, B. A. J. Proteome Res. 2009, 8, 3958.  doi: 10.1021/pr900278c

    39. [39]

      Schultz, M. J.; Swindall, A. F.; Bellis, S. L. Cancer Metastasis Rev. 2012, 31, 501.  doi: 10.1007/s10555-012-9359-7

    40. [40]

      Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.  doi: 10.1126/science.1059820

    41. [41]

      Hu, Y. M.; Borges, C. R. Analyst 2017, 142, 2748.  doi: 10.1039/C7AN00396J

    42. [42]

      Reis, C. A.; Osorio, H.; Silva, L.; Gomes, C.; David, L. J. Clin. Pathol. 2010, 63, 322.  doi: 10.1136/jcp.2009.071035

    43. [43]

      Zhang, Z. J.; Wuhrer, M.; Holst, S. Glycoconjugate J. 2018, 35, 139.  doi: 10.1007/s10719-018-9820-0

    44. [44]

      Liu, Y. S.; He, J. T.; Li, C.; Benitez, R.; Fu, S.; Marrero, J.; Lubman, D. M. J. Proteome Res. 2010, 9, 798.  doi: 10.1021/pr900715p

    45. [45]

      Zeng, Y.; Ramya, T. N. C.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. Nat. Methods 2009, 6, 207.  doi: 10.1038/nmeth.1305

    46. [46]

      Han, E.; Ding, L.; Qian, R. C.; Bao, L.; Ju, H. X. Anal. Chem. 2012, 84, 1452.  doi: 10.1021/ac203489e

    47. [47]

      Li, D. J.; Chen, Y.; Liu, Z. Chem. Soc. Rev. 2015, 44, 8097.  doi: 10.1039/C5CS00013K

    48. [48]

      Liu, L.-T.; Zhang, Y.; Jiao, J.; Yang, P.-Y.; Lu, H.-J. Acta Chim. Sinica 2013, 71, 535 (in Chinese).
       

    49. [49]

      Liu, Z.; He, H. Acc. Chem. Res. 2017, 50, 2185.  doi: 10.1021/acs.accounts.7b00179

    50. [50]

      Qiu, J.; Zhang, Y.; Lu, H.-J.; Yang, P.-Y. Acta Chim. Sinica 2011, 69, 2123 (in Chinese).  doi: 10.3866/PKU.WHXB20110902
       

    51. [51]

      Ma, Y. Y.; Li, X. L.; Li, W.; Liu, Z. ACS Appl. Mater. Interfaces 2018, 10, 40918.  doi: 10.1021/acsami.8b14441

    52. [52]

      Wang, J.; Chen, P. Acta Chim. Sinica 2017, 75, 1173 (in Chinese).
       

    53. [53]

      Palaniappan, K. K.; Bertozzi, C. R. Chem. Rev. 2016, 116, 14277.  doi: 10.1021/acs.chemrev.6b00023

    54. [54]

      Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.  doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4

    55. [55]

      Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.  doi: 10.1039/b901970g

    56. [56]

      Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. ACS Chem. Biol. 2006, 1, 644.  doi: 10.1021/cb6003228

    57. [57]

      Ning, X. H.; Guo, J.; Wolfert, M. A.; Boons, G. J. Angew. Chem., Int. Ed. 2008, 47, 2253.  doi: 10.1002/anie.200705456

    58. [58]

      Lee, T. S.; Kim, Y.; Zhang, W. Q.; Song, I. H.; Tung, C. H. Biochim. Biophys. Acta-Gen. Subj. 2018, 1862, 1091.  doi: 10.1016/j.bbagen.2018.02.001

    59. [59]

      Shah, M. H.; Telang, S. D.; Shah, P. M.; Patel, P. S. Glycoconjugate J. 2008, 25, 279.  doi: 10.1007/s10719-007-9086-4

    60. [60]

      Sawhney, H.; Kumar, C. A. Cancer Biomark. 2011, 10, 43.

    61. [61]

      Rajpura, K. B.; Patel, P. S.; Chawda, J. G.; Shah, R. M. J. Oral Pathol. Med. 2005, 34, 263.  doi: 10.1111/j.1600-0714.2004.00210.x

    62. [62]

      Krishnan, K.; Balasundaram, S. J. Clin. Diagn. Res. 2017, 11, ZC25.

    63. [63]

      Wongkham, S.; Boonla, C.; Kongkham, S.; Wongkham, C.; Bhudhisawasdi, V.; Sripa, B. Clin. Biochem. 2001, 34, 537.  doi: 10.1016/S0009-9120(01)00265-X

    64. [64]

      Patel, P. S.; Rawal, G. N.; Balar, D. B. Gynecol. Oncol. 1993, 50, 294.  doi: 10.1006/gyno.1993.1214

    65. [65]

      Vuckovic, F.; Theodoratou, E.; Thaci, K.; Timofeeva, M.; Vojta, A.; Stambuk, J.; Pucic-Bakovic, M.; Rudd, P. M.; Derek, L.; Servis, D.; Wennerstrom, A.; Farrington, S. M.; Perola, M.; Aulchenko, Y.; Dunlop, M. G.; Campbell, H.; Lauc, G. Clin. Cancer. Res. 2016, 22, 3078.  doi: 10.1158/1078-0432.CCR-15-1867

    66. [66]

      Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M. Glycobiology 2007, 17, 1344.  doi: 10.1093/glycob/cwm100

    67. [67]

      Kontro, H.; Joenvaara, S.; Haglund, C.; Renkonen, R. Proteomics 2014, 14, 1713.  doi: 10.1002/pmic.201300270

    68. [68]

      Rohrer, J. S. Anal. Biochem. 2000, 283, 3.  doi: 10.1006/abio.2000.4643

    69. [69]

      Raju, T. S. Curr. Opin. Immunol. 2008, 20, 471.  doi: 10.1016/j.coi.2008.06.007

    70. [70]

      Irani, V.; Guy, A. J.; Andrew, D.; Beeson, J. G.; Ramsland, P. A.; Richards, J. S. Mol. Immunol. 2015, 67, 171.  doi: 10.1016/j.molimm.2015.03.255

    71. [71]

      Selman, M. H. J.; Niks, E. H.; Titulaer, M. J.; Verschuuren, J.; Wuhrer, M.; Deelder, A. M. J. Proteome Res. 2011, 10, 143.  doi: 10.1021/pr1004373

    72. [72]

      Fokkink, W. J. R.; Selman, M. H. J.; Dortland, J. R.; Durmus, B.; Kuitwaard, K.; Huizinga, R.; van Rijs, W.; Tio-Gillen, A. P.; van Doorn, P. A.; Deelder, A. M.; Wuhrer, M.; Jacobs, B. C. J. Proteome Res. 2014, 13, 1722.  doi: 10.1021/pr401213z

    73. [73]

      Zhang, D.; Chen, B. C.; Wang, Y. M.; Xia, P.; He, C. Y.; Liu, Y. J.; Zhang, R. Q.; Zhang, M.; Li, Z. L. Sci. Rep. 2016, 6, 10.  doi: 10.1038/s41598-016-0003-6

    74. [74]

      Tajiri, M.; Ohyama, C.; Wada, Y. Glycobiology 2008, 18, 2.  doi: 10.1093/glycob/cwm117

    75. [75]

      Shi, Y.; Xu, X.; Fang, M.; Zhang, M.; Li, Y.; Gillespie, B.; Yorke, S.; Yang, N.; McKew, J. C.; Gahl, W. A.; Huizing, M.; Carrillo- Carrasco, N.; Wang, A. Q. J. Chromatogr. B 2015, 1000, 105.  doi: 10.1016/j.jchromb.2015.07.018

    76. [76]

      Priego-Capote, F.; Orozco-Solano, M. I.; Calderon-Santiago, M.; de Castro, M. D. L. J. Chromatogr. A 2014, 1346, 88.  doi: 10.1016/j.chroma.2014.04.051

    77. [77]

      Kodar, K.; Stadlmann, J.; Klaamas, K.; Sergeyev, B.; Kurtenkov, O. Glycoconjugate J. 2012, 29, 57.  doi: 10.1007/s10719-011-9364-z

    78. [78]

      Balmana, M.; Sarrats, A.; Llop, E.; Barrabes, S.; Saldova, R.; Ferri, M. J.; Figueras, J.; Fort, E.; de Llorens, R.; Rudd, P. M.; Peracaula, R. Clin. Chim. Acta 2015, 442, 56.  doi: 10.1016/j.cca.2015.01.007

    79. [79]

      Hu, Z.-Y.; Sun, Z.; Zhang, Y.; Wu, R.-A.; Zou, H.-F. Acta Chim. Sinica 2012, 70, 2059 (in Chinese).
       

    80. [80]

      Xiong, Y.; Chen, Y.; Ding, L.; Liu, X.; Ju, H. Analyst 2019, 144, 4545.  doi: 10.1039/C9AN00572B

    81. [81]

      Pihikova, D.; Kasak, P.; Kubanikova, P.; Sokol, R.; Tkac, J. Anal. Chim. Acta 2016, 934, 72.  doi: 10.1016/j.aca.2016.06.043

    82. [82]

      Wu, J.; Xie, X. L.; Liu, Y. S.; He, J. T.; Benitez, R.; Buckanovich, R. J.; Lubman, D. M. J. Proteome Res. 2012, 11, 4541.  doi: 10.1021/pr300330z

    83. [83]

      Yang, W. H.; Aziz, P. V.; Heithoff, D. M.; Mahan, M. J.; Smith, J. W.; Marth, J. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 13657.  doi: 10.1073/pnas.1515464112

  • 加载中
    1. [1]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    2. [2]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    3. [3]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    4. [4]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    5. [5]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    8. [8]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    9. [9]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

    10. [10]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    11. [11]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    12. [12]

      Sifang Zhang Yanli Tan Yu Tao Jiaoyan Zhao Haihong Zhu . Exploration and Practice of Ideological and Political Cases in the Course of Chemistry History and Methodology. University Chemistry, 2024, 39(10): 377-388. doi: 10.12461/PKU.DXHX202312067

    13. [13]

      Yuyang Xu Ruying Yang Yanzhe Zhang Yandong Liu Keyi Li Zehui Wei . Research Progress of Aflatoxins Removal by Modern Optical Methods. University Chemistry, 2024, 39(11): 174-181. doi: 10.12461/PKU.DXHX202402064

    14. [14]

      Jingfeng Lan Li Wu Guangnong Lu Liu Yang Xiaolong Li Xiangyang Xu Yongwen Shen E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130

    15. [15]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    16. [16]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    17. [17]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    18. [18]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

Metrics
  • PDF Downloads(9)
  • Abstract views(1036)
  • HTML views(171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return