Citation: Xiong Yingying, Chen Yunlong, Ju Huangxian. Glycan Analysis in Cellular Secretion[J]. Acta Chimica Sinica, ;2019, 77(12): 1221-1229. doi: 10.6023/A19080299 shu

Glycan Analysis in Cellular Secretion

  • Corresponding author: Ju Huangxian, hxju@nju.edu.cn
  • Received Date: 10 August 2019
    Available Online: 9 December 2019

    Fund Project: the National Natural Science Foundation of China 21635005Project supported by the National Natural Science Foundation of China (Nos. 21635005, 21827812, 21890741)the National Natural Science Foundation of China 21890741the National Natural Science Foundation of China 21827812

Figures(9)

  • Glycans are important components of mammalian cells, which exists extensively in eukaryocytes. Glycans are mainly consisted of monosaccharides, oligosaccharides and polysaccharides. They are connected to proteins or lipids through glycosylation, which constitute glycoconjugates. Glycosylation is one of the most important post-modifications of proteins, which mediate a wide variety of biological processes, including cell growth and differentiation, cell-cell communication, immune response, pathogen interaction, and intracellular signaling events. Because of the complex marshalling sequences, diversiform connection types and multiple branch structures, glycans are endowed with various structures. The diversity of glycan structure brings glycoconjugates with abundant information of cellular function. Among all the factors, human diseases act as an important ingredient which can induce unnatural glycosylation process. Glycoconjugates have been chosen as an efficient biomarker in the area of disease surveillance and targeted drug therapy. Thus, analysis of secreted glycans is of great importance for monitoring the states of cells or diseases in clinical diagnosis and treatment. Based on recent research of extracellular glycans, this review introduces the types of glycans in cellular secretion and their biological functions or significances, summarizes the identification or detection techniques of the secreted glycans, including lectin identifications, chemical covalent identifications and glycan metabolic marker techniques. Detection technologies of cell secretory glycan have been emphatically introduced in this review, which mainly contain spectrophotometry techniques, chromatography techniques, mass-spectrography techniques, fluorescence methods, electrochemical processes, enzyme linked immunosorbent assay techniques and western blot methods. After summarizing the progresses in this field during the past few decades, we outlook the future development of the analysis of cell secretory glycans. As far as we concern, in situ identification and quantitative detection will be the most challenging but meaningful topic of this field. We hope this review can be provided as a useful guidance for the investigating of glycosylation or glycan-related biological processes.
  • 加载中
    1. [1]

      Xiao, H. P.; Suttapitugsakul, S.; Sun, F. X.; Wu, R. H. Acc. Chem. Res. 2018, 51, 1796.  doi: 10.1021/acs.accounts.8b00200

    2. [2]

      Zhang, L.-X.; Du, X.-F.; Zeng, Y. Acta Chim. Sinica 2016, 74, 149 (in Chinese).  doi: 10.7503/cjcu20150696
       

    3. [3]

      Krishnamoorthy, L.; Mahal, L. K. ACS Chem. Biol. 2009, 4, 715.  doi: 10.1021/cb900103n

    4. [4]

      Pinho, S. S.; Reis, C. A. Nat. Rev. Cancer 2015, 15, 540.  doi: 10.1038/nrc3982

    5. [5]

      Brockhausen, I. BBA-Gen. Subjects 1999, 1473, 67.  doi: 10.1016/S0304-4165(99)00170-1

    6. [6]

      Clerc, F.; Reiding, K. R.; Jansen, B. C.; Kammeijer, G. S. M.; Bondt, A.; Wuhrer, M. Glycoconjugate J. 2016, 33, 309.  doi: 10.1007/s10719-015-9626-2

    7. [7]

      Zhang, Z. J.; Wuhrer, M.; Holst, S. Glycoconjugate J. 2018, 35, 139.  doi: 10.1007/s10719-018-9820-0

    8. [8]

      Fuster, M. M.; Esko, J. D. Nat. Rev. Cancer 2005, 5, 526.  doi: 10.1038/nrc1649

    9. [9]

      Rich, J. R.; Withers, S. G. Nat. Chem. Biol. 2009, 5, 206.  doi: 10.1038/nchembio.148

    10. [10]

      Dennis, J. W.; Nabi, I. R.; Demetriou, M. Cell 2009, 139, 1229.  doi: 10.1016/j.cell.2009.12.008

    11. [11]

      Pinho, S. S.; Figueiredo, J.; Cabral, J.; Carvalho, S.; Dourado, J.; Magalhaes, A.; Gartner, F.; Mendonca, A. M.; Isaji, T.; Cu, J. G.; Carneiro, F.; Seruca, R.; Taniguchi, N.; Reis, C. A. BBA-Gen. Subjects 2013, 1830, 2690.  doi: 10.1016/j.bbagen.2012.10.021

    12. [12]

      Zhao, Y. Y.; Sato, Y.; Isaji, T.; Fukuda, T.; Matsumoto, A.; Miyoshi, E.; Gu, J. G.; Taniguchi, N. FEBS J. 2008, 275, 1939.  doi: 10.1111/j.1742-4658.2008.06346.x

    13. [13]

      Takeuchi, H.; Haltiwanger, R. S. Biochem. Biophys. Res. Commun. 2014, 453, 235.  doi: 10.1016/j.bbrc.2014.05.115

    14. [14]

      Boscher, C.; Dennis, J. W.; Nabi, I. R. Curr. Opin. Cell Biol. 2011, 23, 383.  doi: 10.1016/j.ceb.2011.05.001

    15. [15]

      Ju, T. Z.; Otto, V. I.; Cummings, R. D. Angew. Chem., Int. Ed. 2011, 50, 1770.  doi: 10.1002/anie.201002313

    16. [16]

      Gilgunn, S.; Conroy, P. J.; Saldova, R.; Rudd, P. M.; O'Kennedy, R. J. Nat. Rev. Urol. 2013, 10, 99.  doi: 10.1038/nrurol.2012.258

    17. [17]

      Ohtsubo, K.; Marth, J. D. Cell 2006, 126, 855.  doi: 10.1016/j.cell.2006.08.019

    18. [18]

      Kailemia, M. J.; Park, D.; Lebrilla, C. B. Anal. Bioanal. Chem. 2017, 409, 395.  doi: 10.1007/s00216-016-9880-6

    19. [19]

      Adamczyk, B.; Tharmalingam, T.; Rudd, P. M. BBA-Gen. Subjects 2012, 1820, 1347.  doi: 10.1016/j.bbagen.2011.12.001

    20. [20]

      Theocharis, A. D.; Skandalis, S. S.; Gialeli, C.; Karamanos, N. K. Adv. Drug Del. Rev. 2016, 97, 4.  doi: 10.1016/j.addr.2015.11.001

    21. [21]

      Muiznieks, L.; Keeley, F. W. Biochem. Cell Biol. 2010, 88, 392.

    22. [22]

      George, E. L.; Georgeslabouesse, E. N.; Patelking, R. S.; Rayburn, H.; Hynes, R. O. Development 1993, 119, 1079.

    23. [23]

      Aumailley, M.; Bruckner-Tuderman, L.; Carter, W. G.; Deutzmann, R.; Edgar, D.; Ekblom, P.; Engel, J.; Engvall, E.; Hohenester, E.; Jones, J. C. R.; Kleinman, H. K.; Marinkovich, M. P.; Martin, G. R.; Mayer, U.; Meneguzzi, G.; Miner, J. H.; Miyazaki, K.; Patarroyo, M.; Paulsson, M.; Quaranta, V.; Sanes, J. R.; Sasaki, T.; Sekiguchi, K.; Sorokin, L. M.; Talts, J. F.; Tryggvason, K.; Uitto, J.; Virtanen, I.; von der Mark, K.; Wewer, U. M.; Yamada, Y.; Yurchenco, P. D. Matrix Biol. 2005, 24, 326.  doi: 10.1016/j.matbio.2005.05.006

    24. [24]

      Feng, Y. M.; Guo, Y. N.; Li, Y. R.; Tao, J.; Ding, L.; Wu, J.; Ju, H. X. Anal. Chim. Acta 2018, 1039, 108.  doi: 10.1016/j.aca.2018.07.040

    25. [25]

      Kim, S. H.; Turnbull, J.; Guimond, S. J. Endocrinol. 2011, 209, 139.  doi: 10.1530/JOE-10-0377

    26. [26]

      Bonnans, C.; Chou, J.; Werb, Z. Nat. Rev. Mol. Cell Biol. 2014, 15, 786.

    27. [27]

      Varki, A. Trends Mol. Med. 2008, 14, 351.  doi: 10.1016/j.molmed.2008.06.002

    28. [28]

      Wu, J.; Xie, X. L.; Nie, S.; Buckanovich, R. J.; Lubman, D. M. J. Proteome Res. 2013, 12, 3342.  doi: 10.1021/pr400169n

    29. [29]

      Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M. Glycobiology 2007, 17, 1344.  doi: 10.1093/glycob/cwm100

    30. [30]

      Ye, B.; Skates, S.; Mok, S. C.; Horick, N. K.; Rosenberg, H. F.; Vitonis, A.; Edwards, D.; Sluss, P.; Han, W. K.; Berkowitz, R. S.; Cramer, D. W. Clin. Cancer. Res. 2006, 12, 432.  doi: 10.1158/1078-0432.CCR-05-0461

    31. [31]

      Zhang, H.; Li, X. J.; Martin, D. B.; Aebersold, R. Nat. Biotechnol. 2003, 21, 660.  doi: 10.1038/nbt827

    32. [32]

      Vajaria, B. N.; Patel, K. R.; Begum, R.; Shah, F. D.; Patel, J. B.; Shukla, S. N.; Patel, P. S. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2013, 115, 764.  doi: 10.1016/j.oooo.2013.01.004

    33. [33]

      Theocharis, A. D.; Gialeli, C.; Bouris, P.; Giannopoulou, E.; Skandalis, S. S.; Aletras, A. J.; Iozzo, R. V.; Karamanos, N. K. FEBS J. 2014, 281, 5023.  doi: 10.1111/febs.12927

    34. [34]

      Iozzo, R. V.; Sanderson, R. D. J. Cell. Mol. Med. 2011, 15, 1013.  doi: 10.1111/j.1582-4934.2010.01236.x

    35. [35]

      Chandler, E. M.; Seo, B. R.; Califano, J. P.; Eguiluz, R. C. A.; Lee, J. S.; Yoon, C. J.; Tims, D. T.; Wang, J. X.; Cheng, L.; Mohanan, S.; Buckley, M. R.; Cohen, I.; Nikitin, A. Y.; Williams, R. M.; Gourdon, D.; Reinhart-King, C. A.; Fischbach, C. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 9786.  doi: 10.1073/pnas.1121160109

    36. [36]

      Durbeej, M. Cell Tissue Res. 2010, 339, 259.  doi: 10.1007/s00441-009-0838-2

    37. [37]

      Hallmann, R.; Horn, N.; Selg, M.; Wendler, O.; Pausch, F.; Sorokin, L. M. Physiol. Rev. 2005, 85, 979.  doi: 10.1152/physrev.00014.2004

    38. [38]

      Arcinas, A.; Yen, T. Y.; Kebebew, E.; Macher, B. A. J. Proteome Res. 2009, 8, 3958.  doi: 10.1021/pr900278c

    39. [39]

      Schultz, M. J.; Swindall, A. F.; Bellis, S. L. Cancer Metastasis Rev. 2012, 31, 501.  doi: 10.1007/s10555-012-9359-7

    40. [40]

      Bertozzi, C. R.; Kiessling, L. L. Science 2001, 291, 2357.  doi: 10.1126/science.1059820

    41. [41]

      Hu, Y. M.; Borges, C. R. Analyst 2017, 142, 2748.  doi: 10.1039/C7AN00396J

    42. [42]

      Reis, C. A.; Osorio, H.; Silva, L.; Gomes, C.; David, L. J. Clin. Pathol. 2010, 63, 322.  doi: 10.1136/jcp.2009.071035

    43. [43]

      Zhang, Z. J.; Wuhrer, M.; Holst, S. Glycoconjugate J. 2018, 35, 139.  doi: 10.1007/s10719-018-9820-0

    44. [44]

      Liu, Y. S.; He, J. T.; Li, C.; Benitez, R.; Fu, S.; Marrero, J.; Lubman, D. M. J. Proteome Res. 2010, 9, 798.  doi: 10.1021/pr900715p

    45. [45]

      Zeng, Y.; Ramya, T. N. C.; Dirksen, A.; Dawson, P. E.; Paulson, J. C. Nat. Methods 2009, 6, 207.  doi: 10.1038/nmeth.1305

    46. [46]

      Han, E.; Ding, L.; Qian, R. C.; Bao, L.; Ju, H. X. Anal. Chem. 2012, 84, 1452.  doi: 10.1021/ac203489e

    47. [47]

      Li, D. J.; Chen, Y.; Liu, Z. Chem. Soc. Rev. 2015, 44, 8097.  doi: 10.1039/C5CS00013K

    48. [48]

      Liu, L.-T.; Zhang, Y.; Jiao, J.; Yang, P.-Y.; Lu, H.-J. Acta Chim. Sinica 2013, 71, 535 (in Chinese).
       

    49. [49]

      Liu, Z.; He, H. Acc. Chem. Res. 2017, 50, 2185.  doi: 10.1021/acs.accounts.7b00179

    50. [50]

      Qiu, J.; Zhang, Y.; Lu, H.-J.; Yang, P.-Y. Acta Chim. Sinica 2011, 69, 2123 (in Chinese).  doi: 10.3866/PKU.WHXB20110902
       

    51. [51]

      Ma, Y. Y.; Li, X. L.; Li, W.; Liu, Z. ACS Appl. Mater. Interfaces 2018, 10, 40918.  doi: 10.1021/acsami.8b14441

    52. [52]

      Wang, J.; Chen, P. Acta Chim. Sinica 2017, 75, 1173 (in Chinese).
       

    53. [53]

      Palaniappan, K. K.; Bertozzi, C. R. Chem. Rev. 2016, 116, 14277.  doi: 10.1021/acs.chemrev.6b00023

    54. [54]

      Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596.  doi: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4

    55. [55]

      Jewett, J. C.; Bertozzi, C. R. Chem. Soc. Rev. 2010, 39, 1272.  doi: 10.1039/b901970g

    56. [56]

      Agard, N. J.; Baskin, J. M.; Prescher, J. A.; Lo, A.; Bertozzi, C. R. ACS Chem. Biol. 2006, 1, 644.  doi: 10.1021/cb6003228

    57. [57]

      Ning, X. H.; Guo, J.; Wolfert, M. A.; Boons, G. J. Angew. Chem., Int. Ed. 2008, 47, 2253.  doi: 10.1002/anie.200705456

    58. [58]

      Lee, T. S.; Kim, Y.; Zhang, W. Q.; Song, I. H.; Tung, C. H. Biochim. Biophys. Acta-Gen. Subj. 2018, 1862, 1091.  doi: 10.1016/j.bbagen.2018.02.001

    59. [59]

      Shah, M. H.; Telang, S. D.; Shah, P. M.; Patel, P. S. Glycoconjugate J. 2008, 25, 279.  doi: 10.1007/s10719-007-9086-4

    60. [60]

      Sawhney, H.; Kumar, C. A. Cancer Biomark. 2011, 10, 43.

    61. [61]

      Rajpura, K. B.; Patel, P. S.; Chawda, J. G.; Shah, R. M. J. Oral Pathol. Med. 2005, 34, 263.  doi: 10.1111/j.1600-0714.2004.00210.x

    62. [62]

      Krishnan, K.; Balasundaram, S. J. Clin. Diagn. Res. 2017, 11, ZC25.

    63. [63]

      Wongkham, S.; Boonla, C.; Kongkham, S.; Wongkham, C.; Bhudhisawasdi, V.; Sripa, B. Clin. Biochem. 2001, 34, 537.  doi: 10.1016/S0009-9120(01)00265-X

    64. [64]

      Patel, P. S.; Rawal, G. N.; Balar, D. B. Gynecol. Oncol. 1993, 50, 294.  doi: 10.1006/gyno.1993.1214

    65. [65]

      Vuckovic, F.; Theodoratou, E.; Thaci, K.; Timofeeva, M.; Vojta, A.; Stambuk, J.; Pucic-Bakovic, M.; Rudd, P. M.; Derek, L.; Servis, D.; Wennerstrom, A.; Farrington, S. M.; Perola, M.; Aulchenko, Y.; Dunlop, M. G.; Campbell, H.; Lauc, G. Clin. Cancer. Res. 2016, 22, 3078.  doi: 10.1158/1078-0432.CCR-15-1867

    66. [66]

      Saldova, R.; Royle, L.; Radcliffe, C. M.; Hamid, U. M. A.; Evans, R.; Arnold, J. N.; Banks, R. E.; Hutson, R.; Harvey, D. J.; Antrobus, R.; Petrescu, S. M.; Dwek, R. A.; Rudd, P. M. Glycobiology 2007, 17, 1344.  doi: 10.1093/glycob/cwm100

    67. [67]

      Kontro, H.; Joenvaara, S.; Haglund, C.; Renkonen, R. Proteomics 2014, 14, 1713.  doi: 10.1002/pmic.201300270

    68. [68]

      Rohrer, J. S. Anal. Biochem. 2000, 283, 3.  doi: 10.1006/abio.2000.4643

    69. [69]

      Raju, T. S. Curr. Opin. Immunol. 2008, 20, 471.  doi: 10.1016/j.coi.2008.06.007

    70. [70]

      Irani, V.; Guy, A. J.; Andrew, D.; Beeson, J. G.; Ramsland, P. A.; Richards, J. S. Mol. Immunol. 2015, 67, 171.  doi: 10.1016/j.molimm.2015.03.255

    71. [71]

      Selman, M. H. J.; Niks, E. H.; Titulaer, M. J.; Verschuuren, J.; Wuhrer, M.; Deelder, A. M. J. Proteome Res. 2011, 10, 143.  doi: 10.1021/pr1004373

    72. [72]

      Fokkink, W. J. R.; Selman, M. H. J.; Dortland, J. R.; Durmus, B.; Kuitwaard, K.; Huizinga, R.; van Rijs, W.; Tio-Gillen, A. P.; van Doorn, P. A.; Deelder, A. M.; Wuhrer, M.; Jacobs, B. C. J. Proteome Res. 2014, 13, 1722.  doi: 10.1021/pr401213z

    73. [73]

      Zhang, D.; Chen, B. C.; Wang, Y. M.; Xia, P.; He, C. Y.; Liu, Y. J.; Zhang, R. Q.; Zhang, M.; Li, Z. L. Sci. Rep. 2016, 6, 10.  doi: 10.1038/s41598-016-0003-6

    74. [74]

      Tajiri, M.; Ohyama, C.; Wada, Y. Glycobiology 2008, 18, 2.  doi: 10.1093/glycob/cwm117

    75. [75]

      Shi, Y.; Xu, X.; Fang, M.; Zhang, M.; Li, Y.; Gillespie, B.; Yorke, S.; Yang, N.; McKew, J. C.; Gahl, W. A.; Huizing, M.; Carrillo- Carrasco, N.; Wang, A. Q. J. Chromatogr. B 2015, 1000, 105.  doi: 10.1016/j.jchromb.2015.07.018

    76. [76]

      Priego-Capote, F.; Orozco-Solano, M. I.; Calderon-Santiago, M.; de Castro, M. D. L. J. Chromatogr. A 2014, 1346, 88.  doi: 10.1016/j.chroma.2014.04.051

    77. [77]

      Kodar, K.; Stadlmann, J.; Klaamas, K.; Sergeyev, B.; Kurtenkov, O. Glycoconjugate J. 2012, 29, 57.  doi: 10.1007/s10719-011-9364-z

    78. [78]

      Balmana, M.; Sarrats, A.; Llop, E.; Barrabes, S.; Saldova, R.; Ferri, M. J.; Figueras, J.; Fort, E.; de Llorens, R.; Rudd, P. M.; Peracaula, R. Clin. Chim. Acta 2015, 442, 56.  doi: 10.1016/j.cca.2015.01.007

    79. [79]

      Hu, Z.-Y.; Sun, Z.; Zhang, Y.; Wu, R.-A.; Zou, H.-F. Acta Chim. Sinica 2012, 70, 2059 (in Chinese).
       

    80. [80]

      Xiong, Y.; Chen, Y.; Ding, L.; Liu, X.; Ju, H. Analyst 2019, 144, 4545.  doi: 10.1039/C9AN00572B

    81. [81]

      Pihikova, D.; Kasak, P.; Kubanikova, P.; Sokol, R.; Tkac, J. Anal. Chim. Acta 2016, 934, 72.  doi: 10.1016/j.aca.2016.06.043

    82. [82]

      Wu, J.; Xie, X. L.; Liu, Y. S.; He, J. T.; Benitez, R.; Buckanovich, R. J.; Lubman, D. M. J. Proteome Res. 2012, 11, 4541.  doi: 10.1021/pr300330z

    83. [83]

      Yang, W. H.; Aziz, P. V.; Heithoff, D. M.; Mahan, M. J.; Smith, J. W.; Marth, J. D. Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 13657.  doi: 10.1073/pnas.1515464112

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    7. [7]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    15. [15]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    16. [16]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    20. [20]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

Metrics
  • PDF Downloads(9)
  • Abstract views(968)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return