Citation: Jin Jiaoyu, Yan Xiaoxuan, Liu Yaping, Lan Wenxian, Wang Chunxi, Xu Bin, Cao Chunyang. Recent Advances in the Structural Studies on Cytosine Deaminase APOBEC3 Family Members and Their Nucleic Acid Complexes[J]. Acta Chimica Sinica, ;2019, 77(11): 1089-1098. doi: 10.6023/A19080296 shu

Recent Advances in the Structural Studies on Cytosine Deaminase APOBEC3 Family Members and Their Nucleic Acid Complexes

Figures(10)

  • Apolipoprotein B mRNA catalytically edited protein APOBEC3 (A3) is a family of proteins in the intracellular retrotransposon defense system, including seven members APOBEC3A (A3A), APOBEC3B (A3B), APOBEC3C (A3C), APOBEC3DE (A3DE), APOBEC3F (A3F), APOBEC3G (A3G) and APOBEC3H (A3H) encoded in a tandem array on human chromosome 22. They deaminate cytosine in single-stranded DNA and RNA substrates, which play a variety of roles in human health and disease. Among them, A3DE, A3F, A3G and A3H restrict replication of human immunodeficiency virus-1 (HIV-1) in strains lacking the virus infectivity factor protein (Vif) by deaminating cytidine in virus cDNA. Subsequent replication of the virus cDNA generates the hallmark G-to-A hyper-mutations, causing proviral inactivation. HIV-1 develops countermeasures to antagonize this intrinsic host defense response. Its Vif protein facilitates polyubiquitination of A3 members by recruiting an E3 ubiquitin ligase complex, which results in the proteasomal degradation of A3 proteins. To better understand the deamination mechanism of A3 proteins, we here reviewed the research progress on the structures of free A3 family members and their complexes with single-stranded DNA or double-stranded RNA. It includes the structures of the apo-forms of N- and/or C-termini domains of A3A, A3B, A3C, A3F, A3G and A3H, or the chimeric forms of their functional domains, and their complexes with nucleic acids, which demonstrate the basis of how A3 proteins to identify target base cytosine in hot motifs 5'-TC or 5'-CC in DNA, and then to conduct catalytic deamination. We simply described how the key residues of A3 members are involved in DNA or RNA interactions, the common properties of their structures, and their interactions with DNA or RNA. We partially discussed the interactions between A3 proteins and Vif, therefore, this review might be helpful to rationally design anti-virus drugs to disrupt these interactions. We finally suggested the new research directions about how to make full-length A3 proteins containing N-terminal CD1 and C-terminal CD2 domains, and how to study the interactions between these full-length A3 proteins and nucleic acids through cryo-EM and other techniques.
  • 加载中
    1. [1]

      Goila-Gaur, R.; Strebel, K. Retrovirology 2008, 5, 51.  doi: 10.1186/1742-4690-5-51

    2. [2]

      Larue, R. S.; Andresdottir, V.; Blanchard, Y.; Conticello, S. G.; Derse, D.; Emerman, M.; Greene, W. C.; Jonsson, S. R.; Landau, N. R.; Lochelt, M.; Malik, H. S.; Malim, M. H.; Munk, C.; O'Brien, S. J.; Pathak, V. K.; Strebel, K.; Wain-Hobson, S.; Yu, X. F.; Yuhki, N.; Harris, R. S. J. Virol. 2009, 83, 494.  doi: 10.1128/JVI.01976-08

    3. [3]

      Wedekind, J. E. Trends Genet. 2003, 19, 207.  doi: 10.1016/S0168-9525(03)00054-4

    4. [4]

      Harris, R. S.; Liddament, M. T. Nat. Rev. Immunol. 2004, 4, 868.  doi: 10.1038/nri1489

    5. [5]

      Kitamura, S.; Ode, H.; Nakashima, M. Nat. Struct. Mol. Biol. 2012, 19, 1005.  doi: 10.1038/nsmb.2378

    6. [6]

      Mitra, M.; Hercik, K.; Byeon, I. J. L. Nucleic Acids Res. 2014, 42, 1095.  doi: 10.1093/nar/gkt945

    7. [7]

      Chen, K. M.; Harjes, E.; Gross, P. J.; Fahmy, A.; Lu, Y.; Shindo, K. Seibutsu Butsuri 2008, 48, 116.
       

    8. [8]

      Burns, M. B.; Lackey, L.; Carpenter, M. A.; Rathore, A.; Land, A. M.; Leonard, B. Nature 2013, 494, 366.  doi: 10.1038/nature11881

    9. [9]

      Shi, K.; Carpenter, M. A.; Kurahashi, K.; Harris, R. S.; Aihara, H. J. Biol. Chem. 2015, 290, 28120.  doi: 10.1074/jbc.M115.679951

    10. [10]

      Xiao, X.; Yang, H.; Arutiunian, V.; Fang, Y.; Chen, X. S. Nucleic Acids Res. 2017, 45, 7494.  doi: 10.1093/nar/gkx362

    11. [11]

      Nathans, R.; Cao, H.; Sharova, N.; Ali, A.; Sharkey, M.; Stranska, R. Nat. Biotechnol. 2008, 26, 1187.  doi: 10.1038/nbt.1496

    12. [12]

      Dang, Y.; Wang, X.; Esselman, W. J.; Zheng, Y. H. J. Virol. 2006, 80, 10522.  doi: 10.1128/JVI.01123-06

    13. [13]

      Stanley, B. J.; Ehrlich, E. S.; Short, L.; Yu, Y.; Xiong, Y. J. Virol. 2008, 82, 8656.  doi: 10.1128/JVI.00767-08

    14. [14]

      Seplyarskiy, V. B.; Andrianova, M. A.; Bazykin, G. A. Genome Res. 2017, 27, 175.  doi: 10.1101/gr.210336.116

    15. [15]

      Zheng, Y. H.; Irwin, D.; Kurosu, T. J. Virol. 2004, 78, 6073.  doi: 10.1128/JVI.78.11.6073-6076.2004

    16. [16]

      Byeon, I. J. L.; Ahn, J.; Mitra, M.; Byeon, C. H.; Hercík, K.; Hritz, J. Nat. Commun. 2013, 4, 1890.  doi: 10.1038/ncomms2883

    17. [17]

      Chelico, L.; Prochnow, C.; Erie, D. A. J. Biol. Chem. 2010, 283, 16195.
       

    18. [18]

      Guo, Y.; Dong, L.; Qiu, X.; Wang, Y.; Zhang, B.; Liu, H. Nature 2014, 505(7482), 229.  doi: 10.1038/nature12884

    19. [19]

      Bohn, M. F. Structure 2013, 21, 1042.  doi: 10.1016/j.str.2013.04.010

    20. [20]

      Siu, K. K.; Sultana, A.; Azimi, F. Nat. Commun. 2013, 4, 2593.  doi: 10.1038/ncomms3593

    21. [21]

      Matsui, M.; Shindo, K.; Izumi, T.; Io, K.; Shinohara, M.; Komano, J.; Kobayashi, M.; Kadowaki, N.; Harris, R. S.; Takaori-Kondo, A. Virol. J. 2014, 11, 122.  doi: 10.1186/1743-422X-11-122

    22. [22]

      Kouno, T.; Luengas, E. M.; Shigematsu, M. Nat. Struct. Mol. Biol. 2015, 22(6), 485.  doi: 10.1038/nsmb.3033

    23. [23]

      Klarmann, G. J. J. Biol. Chem. 2003, 278, 7902.  doi: 10.1074/jbc.M207223200

    24. [24]

      Furukawa, A.; Nagata, T.; Matsugami, A. Nucleic Acids Symp. Ser. 2009, 53, 87.  doi: 10.1093/nass/nrp044

    25. [25]

      Mangeat, B.; Turelli, P.; Caron, G.; Friedli, M.; Perrin, L.; Trono, D. Nature 2003, 4244, 99.

    26. [26]

      Peng, G. J. Exp. Med. 2006, 203, 41.  doi: 10.1084/jem.20051512

    27. [27]

      Chelico, L.; Pham, P.; Calabrese, P.; Goodman, M. F. Nat. Struct. Mol. Biol. 2006, 13, 392  doi: 10.1038/nsmb1086

    28. [28]

      Harjes, E.; Gross, P. J.; Chen, K. M.; Lu, Y.; Shindo, K. J. Mol. Biol. 2009, 389, 819.  doi: 10.1016/j.jmb.2009.04.031

    29. [29]

      Wichroski, M. J.; K. Ichiyama; T. M. Rana. J. Biol. Chem. 2005, 280, 8387.
       

    30. [30]

      Sheehy, A. M.; Gaddis, N. C.; Choi, J. D.; Malim, M. H. Nature 2002, 418, 646.  doi: 10.1038/nature00939

    31. [31]

      Bennett, R. P.; Presnyak, V.; Wedekind, J. E.; Smith, H. C. J. Biol. Chem. 2008, 283, 7320.  doi: 10.1074/jbc.M708567200

    32. [32]

      Lu, X.; Zhang, T. L.; Xu, Z. J. Biol. Chem. 2015, 290, 4010.  doi: 10.1074/jbc.M114.624262

    33. [33]

      Dang, Y.; Siew, L. M.; Wang, X. J.; Han, Y. X.; Lampen, R.; Zheng, Y. H. J. Biol. Chem. 2008, 283, 11606.  doi: 10.1074/jbc.M707586200

    34. [34]

      Jarmuz, A.; Chester, A.; Bayliss, J.; Gisbourne, J.; Dunham, I.; Scott, J. Genomics 2002, 79, 285.  doi: 10.1006/geno.2002.6718

    35. [35]

      Holden, L. G.; Prochnow, C.; Chang, Y. P. Nature 2008, 456, 121.  doi: 10.1038/nature07357

    36. [36]

      Olson, M. E.; Li, M.; Harris, R. S. Chem. Med. Chem. 2013, 8, 112.  doi: 10.1002/cmdc.201200411

    37. [37]

      Jager, S.; Kim, D. Y.; Hultquist, J. F.; Shindo, K.; Larue, R. S.; Kwon, E. Nature 2012, 481, 371.  doi: 10.1038/nature10693

    38. [38]

      Mehle, A.; Strack, B.; Ancuta, P.; Zhang, C.; Mcpike, M.; Gabuzda, D. J. Biol. Chem. 2004, 279, 7792.  doi: 10.1074/jbc.M313093200

    39. [39]

      Marcsisin, S. R.; Engen, J. R. J. Mol. Biol. 2010, 402, 892.  doi: 10.1016/j.jmb.2010.08.026

    40. [40]

      Bergeron, J. R.; Huthoff, H.; Veselkov, D. A.; Beavil, R. L.; Sanderson, M. R. PLoS Pathog. 2010, 6, e1000925.  doi: 10.1371/journal.ppat.1000925

    41. [41]

      Reingewertz, T. H.; Shalev, D. E.; Friedler, A. Protein Pept. Lett. 2010, 17, 988.  doi: 10.2174/092986610791498876

    42. [42]

      Liddament, M. T.; Brown, W. L.; Schumacher, A. J.; Harris, R. S. Curr. Biol. 2004, 14, 1385.  doi: 10.1016/j.cub.2004.06.050

    43. [43]

      Lu, Z.; Bergeron, J. R. C.; AtkinsLu, Z.; Bergeron, J. R. C.; Atkinson, R. A.; Schaller, T.; Veselkov, D. A.; Oregioni, A. Open. Biol. 2013, 3, 130100.  doi: 10.1098/rsob.130100

    44. [44]

      Luo, K.; Xiao, Z.; Ehrlich, E.; Yu, Y.; Liu, B.; Zheng, S. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11444.  doi: 10.1073/pnas.0502440102

    45. [45]

      Stenglein, M. D.; Burns, M. B.; Li, M.; Lengyel, J.; Harris, R. S. Nat. Struct. Mol. Biol. 2010, 17, 222.  doi: 10.1038/nsmb.1744

    46. [46]

      Chelico, L.; Pham, P.; Calabrese, P.; Goodman, M. F. Nat. Struct. Mol. Biol. 2006, 13, 392.  doi: 10.1038/nsmb1086

    47. [47]

      Ronsard, L.; Raja, R.; Panwar, V.; Saini, S.; Mohankumar, K.; Sridharan, S. Sci. Rep. 2015, 5, 15438.  doi: 10.1038/srep15438

    48. [48]

      Yamanaka, S.; Balestra, M. E.; Ferrell, L. D. Proc. Nat. Acad. Sci. U. S. A. 1995, 92, 8483.  doi: 10.1073/pnas.92.18.8483

    49. [49]

      Navarro, F.; Bollman, B.; Chen, H. Virology 2005, 333, 374.  doi: 10.1016/j.virol.2005.01.011

    50. [50]

      Kouno, T.; Silvas, T. V.; Hilbert, B. J.; Shandilya, S. M. D.; Bohn, M. F.; Kelch, B. A.; Royer, W. E.; Somasundaran, M.; Kurt Yilmaz, N.; Matsuo, H.; Schiffer, C. A. Nat. Commun. 2017, 8, 15024.  doi: 10.1038/ncomms15024

    51. [51]

      Shi, K.; Carpenter, M. A.; Banerjee, S.; Shaban, N. M.; Kurahashi, K.; Salamango, D. J.; McCann, J. L.; Starrett, G. J.; Duffy, J. V.; Demir, O.; Amaro, R. E.; Harki, D. A.; Harris, R. S.; Aihara, H. Nat. Struct Mol. Biol. 2017, 24, 131.  doi: 10.1038/nsmb.3344

    52. [52]

      Fang, Y.; Xiao, X.; Li, S.; Wolfe, A.; Chen, X. S. J. Mol. Biol. 2018, 430, 87.  doi: 10.1016/j.jmb.2017.11.007

    53. [53]

      Cheng, C.; Zhang, T.; Wang, C. X.; Lan, W.; Ding, J.; Cao, C. Y. Chin. J. Chem. 2018, 36, 1241.  doi: 10.1002/cjoc.201800508

    54. [54]

      Xiao, X.; Li, S. X.; Yang, H.; Chen, X. S. Nat. Commun. 2016, 7, 12193.  doi: 10.1038/ncomms12193

    55. [55]

      Maiti, A.; Myint, W.; Kanai, T.; Delviks-Frankenberry, K.; Sierra Rodriguez, C.; Pathak, V. K.; Schiffer, C. A.; Matsuo, H. Nat. Commun. 2018, 9, 2460.  doi: 10.1038/s41467-018-04872-8

    56. [56]

      Yan, X. X.; Lan, W. X.; Wang, C. X.; Cao, C. Y. Chem. Asian J. 2019, 14, 2235.  doi: 10.1002/asia.201900480

    57. [57]

      Bohn, J. A.; Thummar, K.; York, A.; Raymond, A.; Brown, W. C.; Bieniasz, P. D.; Hatziioannou, T.; Smith, J. L. Nat. Commun. 2017, 8, 1021.  doi: 10.1038/s41467-017-01309-6

    58. [58]

      Nadine, M. S.; Shi, K.; Lauer, K. V.; Brown, W. L.; Aihara, H.; Harris, R. S. Mol. Cell 2018, 69, 75.  doi: 10.1016/j.molcel.2017.12.010

    59. [59]

      Matsuoka, T.; Nagae, T.; Ode, H.; Awazu, H.; Kurosawa, T.; Hamano, A.; Matsuoka, K.; Hachiya, A.; Imahashi, M.; Yokomaku, Y.; Watanabe, N.; Iwatani, Y. Nucleic Acids Res. 2018, 46, 10368.  doi: 10.1093/nar/gky676

  • 加载中
    1. [1]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    2. [2]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    6. [6]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    7. [7]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    8. [8]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    9. [9]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    10. [10]

      Qiying Xia Guokui Liu Yunzhi Li Yaoyao Wei Xia Leng Guangli Zhou Aixiang Wang Congcong Mi Dengxue Ma . Construction and Practice of “Teaching-Learning-Assessment Integration” Model Based on Outcome Orientation: Taking “Structural Chemistry” as an Example. University Chemistry, 2024, 39(10): 361-368. doi: 10.3866/PKU.DXHX202311007

    11. [11]

      Zhijun Huang Jiawei Li Mojin Lu Fa Zhou Limiao Chen Jianhan Huang Younian Liu . Spying Operation of the Rabies Virus. University Chemistry, 2024, 39(9): 164-169. doi: 10.12461/PKU.DXHX202403026

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    14. [14]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    15. [15]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    16. [16]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    19. [19]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    20. [20]

      Dongju Zhang . Exploring the Descriptions and Connotations of Basic Concepts of Teaching Crystal Structures. University Chemistry, 2024, 39(3): 18-22. doi: 10.3866/PKU.DXHX202304003

Metrics
  • PDF Downloads(29)
  • Abstract views(1913)
  • HTML views(485)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return