Citation: Li Xin, Zhang Taiyang, Wang Tian, Zhao Yixin. Recent Progress of Photocatalysis Based on Metal Halide Perovskites[J]. Acta Chimica Sinica, ;2019, 77(11): 1075-1088. doi: 10.6023/A19080292 shu

Recent Progress of Photocatalysis Based on Metal Halide Perovskites

  • Corresponding author: Zhao Yixin, yixin.zhao@sjtu.edu.cn
  • Received Date: 4 August 2019
    Available Online: 21 November 2019

Figures(10)

  • photocatalytic pollutant degradation and the synthesis of chemical fuels or other high value-added products via photocatalysis have drawn plenty of attentions in green chemistry and renewable energy research. In recent years, metal-halide perovskites with superior photoelectric properties are successfully utilized into high-efficiency photocatalytic reactions in addition to conventional metal oxide semiconductor materials. In this paper, we reviewed the recent advances of metal-halide perovskite based photocatalyst, especially lead-halide perovskites in photocatalytic hydrogen production, photocatalytic degradation and CO2 reduction. The reaction mechanisms and key challenges for metal halide perovskites photocatalyst are discussed and we prospect the further development of highly efficient and stable metal halide perovskite photocatalysis in the future.
  • 加载中
    1. [1]

      Hisatomi, T.; Domen, K. Nat. Catal. 2019, 2, 387.  doi: 10.1038/s41929-019-0242-6

    2. [2]

      Li, X.-B.; Tung, C.-H.; Wu, L.-Z. Nat. Rev. Chem. 2018, 2, 160.  doi: 10.1038/s41570-018-0024-8

    3. [3]

      Liao, G.; Gong, Y.; Zhang, L.; Gao, H.; Yang, G.-J.; Fang, B. Energy Environ. Sci. 2019, 12, 2080.  doi: 10.1039/C9EE00717B

    4. [4]

      Guo, Y.; Li, Y. R.; Wang, C. M.; Long, R.; Xiong, Y. J. Acta Chim. Sinica 2019, 77, 520(in Chinese).
       

    5. [5]

      Subudhi, S.; Rath, D.; Parida, K. M. Catal. Sci. Technol. 2018, 8, 679.  doi: 10.1039/C7CY02094E

    6. [6]

      Liu, Y. C.; Zheng, X.; Huang, P. Q. Acta Chim. Sinica 2019, 77, 850(in Chinese).  doi: 10.3866/PKU.WHXB201811040
       

    7. [7]

      Chen, Y. K.; Jing, H. R.; Ling, F. L.; Kang, W.; Zhou, T. W.; Liu, X. Q.; Zeng, W.; Zhang, Y. X.; Qi, L.; Fang, L.; Zhou, M. Chem. Phys. Lett. 2019, 722, 90.  doi: 10.1016/j.cplett.2019.02.050

    8. [8]

      Laamari, M. E.; Cheknane, A.; Benghia, A.; Hilal, H. S. Sol. Energy 2019, 182, 9.  doi: 10.1016/j.solener.2019.02.035

    9. [9]

      Bercegol, A.; Ory, D.; Suchet, D.; Cacovich, S.; Fournier, O.; Rousset, J.; Lombez, L. Nat. Commun. 2019, 10, 1586.

    10. [10]

      Zhang, F.; Yang, B.; Li, Y.; Deng, W.; He, R. J. Mater. Chem. C 2017, 5, 8431.

    11. [11]

      Chen, X. Y.; Xie, J. J.; Wang, W.; Yuan, H. H.; Xu, D.; Zhang, T.; He, Y. L.; Shen, H. J. Acta Chim. Sinica 2019, 77, 9(in Chinese).  doi: 10.3866/PKU.WHXB201711141
       

    12. [12]

      Tong, J.; Song, Z.; Kim, D. H.; Chen, X.; Chen, C.; Palmstrom, A. F.; Ndione, P. F.; Reese, M. O.; Dunfield, S. P.; Reid, O. G.; Liu, J.; Zhang, F.; Harvey, S. P.; Li, Z.; Christensen, S. T.; Teeter, G.; Zhao, D.; Al-Jassim, M. M.; van Hest, M.; Beard, M. C.; Shaheen, S. E.; Berry, J. J.; Yan, Y.; Zhu, K. Science 2019, 364, 475.  doi: 10.1126/science.aav7911

    13. [13]

      Wei, Y.; Cheng, Z.; Lin, J. Chem. Soc. Rev. 2019, 48, 310.  doi: 10.1039/C8CS00740C

    14. [14]

      Wei, H.; Huang, J. Nat. Commun. 2019, 10, 1066.  doi: 10.1038/s41467-019-08981-w

    15. [15]

      Wang, K. Y.; Wang, S.; Xiao, S. M.; Song, Q. H. Adv. Opt. Mater. 2018, 6, 1800278.  doi: 10.1002/adom.201800278

    16. [16]

      Senanayak, S. P.; Yang, B.; Thomas, T. H.; Giesbrecht, N.; Huang, W.; Gann, E.; Nair, B.; Goedel, K.; Guha, S.; Moya, X.; McNeill, C. R.; Docampo, P.; Sadhanala, A.; Friend, R. H.; Sirringhaus, H. Sci. Adv. 2017, 3, e1601935.
       

    17. [17]

      Zhao, Y.; Zhu, K. Chem. Soc. Rev. 2016, 45, 655.  doi: 10.1039/C4CS00458B

    18. [18]

      Zhang, T.; Dar, M. I.; Li, G.; Xu, F.; Guo, N.; Gratzel, M.; Zhao, Y. Sci. Adv. 2017, 3, e1700841.

    19. [19]

      Wang, Y.; Zhang, T.; Kan, M.; Li, Y.; Wang, T.; Zhao, Y. Joule 2018, 2, 2065.  doi: 10.1016/j.joule.2018.06.013

    20. [20]

      Zhang, T. Y.; Zhao, Y. X. Acta Chim. Sinica 2015, 73, 202(in Chinese).  doi: 10.3969/j.issn.0253-2409.2015.02.010
       

    21. [21]

      Best Research-Cell Efficiency Chart. https://www.nrel.gov/pv/cell-efficiency.html

    22. [22]

      Zhou, Y. Y.; Zhao, Y. X. Energy Environ. Sci. 2019, 12, 1495.  doi: 10.1039/C8EE03559H

    23. [23]

      Li, C.; Lu, X.; Ding, W.; Feng, L.; Gao, Y.; Guo, Z. Acta Crystallogr. B 2008, 64, 702.  doi: 10.1107/S0108768108032734

    24. [24]

      Subhani, W. S.; Wang, K.; Du, M.; Liu, S. F. Nano Energy 2019, 61, 165.  doi: 10.1016/j.nanoen.2019.04.066

    25. [25]

      Bartel, C. J.; Sutton, C.; Goldsmith, B. R.; Ouyang, R.; Musgrave, C. B.; Ghiringhelli, L. M.; Scheffler, M. Sci. Adv. 2019, 5, eaav0693.  doi: 10.1126/sciadv.aav0693

    26. [26]

      Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Inorg. Chem. 2013, 52, 9019.  doi: 10.1021/ic401215x

    27. [27]

      Ball, J. M.; Lee, M. M.; Hey, A.; Snaith, H. J. Energy Environ. Sci. 2013, 6, 1739.  doi: 10.1039/c3ee40810h

    28. [28]

      Chung, I.; Song, J. H.; Im, J.; Androulakis, J.; Malliakas, C. D.; Li, H.; Freeman, A. J.; Kenney, J. T.; Kanatzidis, M. G. J. Am. Chem. Soc. 2012, 134, 8579.  doi: 10.1021/ja301539s

    29. [29]

      Baikie, T.; Fang, Y. N.; Kadro, J. M.; Schreyer, M.; Wei, F. X.; Mhaisalkar, S. G.; Graetzel, M.; White, T. J. J. Mater. Chem. A 2013, 1, 5628.  doi: 10.1039/c3ta10518k

    30. [30]

      Castelli, I. E.; Thygesen, K. S.; Jacobsen, K. W. J. Mater. Chem. A 2015, 3, 12343.  doi: 10.1039/C5TA01586C

    31. [31]

      Yuan, Y.; Xu, R.; Xu, H.-T.; Hong, F.; Xu, F.; Wang, L.-J. Chinese Phys. B 2015, 24, 116302.  doi: 10.1088/1674-1056/24/11/116302

    32. [32]

      Feng, J.; Xiao, B. J. Phys. Chem. Lett. 2014, 5, 1278.  doi: 10.1021/jz500480m

    33. [33]

      Castelli, I. E.; Olsen, T.; Datta, S.; Landis, D. D.; Dahl, S.; Thygesen, K. S.; Jacobsen, K. W. Energy Environ. Sci. 2012, 5, 5814.  doi: 10.1039/C1EE02717D

    34. [34]

      Ping, Y.; Rocca, D.; Galli, G. Chem. Soc. Rev. 2013, 42, 2437.  doi: 10.1039/c3cs00007a

    35. [35]

      Chiarella, F.; Zappettini, A.; Licci, F.; Borriello, I.; Cantele, G.; Ninno, D.; Cassinese, A.; Vaglio, R. Phys. Rev. B 2008, 77, 045129.  doi: 10.1103/PhysRevB.77.045129

    36. [36]

      Even, J.; Pedesseau, L.; Jancu, J.-M.; Katan, C. J. Phys. Chem. Lett. 2013, 4, 2999.  doi: 10.1021/jz401532q

    37. [37]

      Lang, L.; Yang, J.-H.; Liu, H.-R.; Xiang, H. J.; Gong, X. G. Phys. Lett. A 2014, 378, 290.  doi: 10.1016/j.physleta.2013.11.018

    38. [38]

      Kang, J.; Wang, L. W. J. Phys. Chem. Lett. 2017, 8, 489.  doi: 10.1021/acs.jpclett.6b02800

    39. [39]

      Du, M. H. J. Mater. Chem. A 2014, 2, 9091.  doi: 10.1039/C4TA01198H

    40. [40]

      Du, K. Z.; Meng, W.; Wang, X.; Yan, Y.; Mitzi, D. B. Angew. Chem. Int. Ed. Engl. 2017, 56, 8158.  doi: 10.1002/anie.201703970

    41. [41]

      Umari, P.; Mosconi, E.; De Angelis, F. Sci. Rep. 2014, 4, 4467.
       

    42. [42]

      Mosconi, E.; Umari, P.; De Angelis, F. Phys. Chem. Chem. Phys. 2016, 18, 27158.  doi: 10.1039/C6CP03969C

    43. [43]

      Busipalli, D. L.; Nachimuthu, S.; Jiang, J. C. J. Chin. Chem. Soc. 2019, 66, 575.  doi: 10.1002/jccs.201800443

    44. [44]

      Butler, K. T.; Frost, J. M.; Walsh, A. Mater. Horiz. 2015, 2, 228.  doi: 10.1039/C4MH00174E

    45. [45]

      Buin, A.; Comin, R.; Xu, J. X.; Ip, A. H.; Sargent, E. H. Chem. Mater. 2015, 27, 4405.  doi: 10.1021/acs.chemmater.5b01909

    46. [46]

      Yin, W. J.; Yang, J. H.; Kang, J.; Yan, Y. F.; Wei, S. H. J. Mater. Chem. A 2015, 3, 8926.  doi: 10.1039/C4TA05033A

    47. [47]

      Sun, S. Y.; Salim, T.; Mathews, N.; Duchamp, M.; Boothroyd, C.; Xing, G. C.; Sum, T. C.; Lam, Y. M. Energy Environ. Sci. 2014, 7, 399.  doi: 10.1039/C3EE43161D

    48. [48]

      Lin, C.; Li, S.; Zhang, W.; Shao, C.; Yang, Z. ACS Appl. Energy Mater. 2018, 1, 1374.  doi: 10.1021/acsaem.8b00026

    49. [49]

      Zhang, W.; Eperon, G. E.; Snaith, H. J. Nat. Energy 2016, 1, 16048.  doi: 10.1038/nenergy.2016.48

    50. [50]

      Leguy, A. M. A.; Hu, Y.; Campoy-Quiles, M.; Alonso, M. I.; Weber, O. J.; Azarhoosh, P.; van Schilfgaarde, M.; Weller, M. T.; Bein, T.; Nelson, J.; Docampo, P.; Barnes, P. R. F. Chem. Mater. 2015, 27, 3397.  doi: 10.1021/acs.chemmater.5b00660

    51. [51]

      Gottesman, R.; Haltzi, E.; Gouda, L.; Tirosh, S.; Bouhadana, Y.; Zaban, A.; Mosconi, E.; De Angelis, F. J. Phys. Chem. Lett. 2014, 5, 2662.  doi: 10.1021/jz501373f

    52. [52]

      Mosconi, E.; Azpiroz, J. M.; De Angelis, F. Chem. Mater. 2015, 27, 4885.  doi: 10.1021/acs.chemmater.5b01991

    53. [53]

      Pavliuk, M. V.; Abdellah, M.; Sa, J. Mater. Today Commun. 2018, 16, 90.  doi: 10.1016/j.mtcomm.2018.05.001

    54. [54]

      Paul, T.; Das, D.; Das, B. K.; Sarkar, S.; Maiti, S.; Chattopadhyay, K. K. J. Hazard. Mater. 2019, 380, 120855.

    55. [55]

      Zhao, Y. Y.; Wang, Y. B.; Liang, X. H.; Shi, H. X.; Wang, C. J.; Fan, J.; Hu, X. Y.; Liu, E. Z. Appl. Catal. B-Environ. 2019, 247, 57.  doi: 10.1016/j.apcatb.2019.01.090

    56. [56]

      Feng, X.; Ju, H.; Song, T.; Fang, T.; Liu, W.; Huang, W. ACS Sustain. Chem. Eng. 2019, 7, 5152.  doi: 10.1021/acssuschemeng.8b06023

    57. [57]

      Guan, Z.; Wu, Y.; Wang, P.; Zhang, Q.; Wang, Z.; Zheng, Z.; Liu, Y.; Dai, Y.; Whangbo, M.-H.; Huang, B. Appl. Catal. B-Environ. 2019, 245, 522.  doi: 10.1016/j.apcatb.2019.01.019

    58. [58]

      Rokesh, K.; Sakar, M.; Do, T.-O. Mater. Lett. 2019, 242, 99.  doi: 10.1016/j.matlet.2019.01.109

    59. [59]

      Dai, Y.; Tüysüz, H. ChemSusChem 2019, 12, 2587.

    60. [60]

      Bresolin, B.-M.; Hammouda, S. B.; Sillanp , M. J. Photochem. Photobiol. A:Chem. 2019, 376, 116.  doi: 10.1016/j.jphotochem.2019.03.009

    61. [61]

      Zhang, Z.; Liang, Y.; Huang, H.; Liu, X.; Li, Q.; Chen, L.; Xu, D. Angew. Chem. Int. Ed. 2019, 58, 7263.  doi: 10.1002/anie.201900658

    62. [62]

      Zhou, L.; Xu, Y. F.; Chen, B. X.; Kuang, D. B.; Su, C. Y. Small 2018, 14, e1703762.  doi: 10.1002/smll.201703762

    63. [63]

      Yang, M.-Z.; Xu, Y.-F.; Liao, J.-F.; Wang, X.-D.; Chen, H.-Y.; Kuang, D.-B. J. Mater. Chem. A 2019, 7, 5409.  doi: 10.1039/C8TA11760H

    64. [64]

      Wang, Q. L.; Tao, L. M.; Jiang, X. X.; Wang, M. K.; Shen, Y. Appl. Surf. Sci. 2019, 465, 607.

    65. [65]

      Xu, Y. F.; Wang, X. D.; Liao, J. F.; Chen, B. X.; Chen, H. Y.; Kuang, D. B. Adv. Mater. Interfaces 2018, 5, 1801015.  doi: 10.1002/admi.201801015

    66. [66]

      Xu, Y. F.; Yang, M. Z.; Chen, H. Y.; Liao, J. F.; Wang, X. D.; Kuang, D. B. ACS Appl. Energy Mater. 2018, 1, 5083.

    67. [67]

      Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. J. Am. Chem. Soc. 2017, 139, 5660.  doi: 10.1021/jacs.7b00489

    68. [68]

      Schunemann, S.; van Gastel, M.; Tuysuz, H. ChemSusChem 2018, 11, 2057.  doi: 10.1002/cssc.201800679

    69. [69]

      Liao, J. F.; Xu, Y. F.; Wang, X. D.; Chen, H. Y.; Kuang, D. B. ACS Appl. Mater. Interfaces 2018, 10, 42301.  doi: 10.1021/acsami.8b14988

    70. [70]

      Wu, Y.; Wang, P.; Zhu, X.; Zhang, Q.; Wang, Z.; Liu, Y.; Zou, G.; Dai, Y.; Whangbo, M. H.; Huang, B. Adv. Mater. 2018, 30, 1704342.  doi: 10.1002/adma.201704342

    71. [71]

      Ou, M.; Tu, W.; Yin, S.; Xing, W.; Wu, S.; Wang, H.; Wan, S.; Zhong, Q.; Xu, R. Angew. Chem. Int. Ed. 2018, 57, 13570.  doi: 10.1002/anie.201808930

    72. [72]

      Pu, Y. C.; Fan, H. C.; Liu, T. W.; Chen, J. W. J. Mater. Chem. A 2017, 5, 25438.  doi: 10.1039/C7TA08190A

    73. [73]

      Kong, Z. C.; Liao, J. F.; Dong, Y. J.; Xu, Y. F.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. ACS Energy Lett. 2018, 3, 2656.  doi: 10.1021/acsenergylett.8b01658

    74. [74]

      Wu, L. Y.; Mu, Y. F.; Guo, X. X.; Zhang, W.; Zhang, Z. M.; Zhang, M.; Lu, T. B. Angew. Chem. Int. Ed. 2019, 58, 9491.

    75. [75]

      Wan, S. P.; Ou, M.; Zhong, Q.; Wang, X. M. Chem. Eng. J. 2019, 358, 1287.  doi: 10.1016/j.cej.2018.10.120

    76. [76]

      Guo, S. H.; Zhou, J.; Zhao, X.; Sun, C. Y.; You, S. Q.; Wang, X. L.; Su, Z. M. J. Catal. 2019, 369, 201.  doi: 10.1016/j.jcat.2018.11.004

    77. [77]

      Huang, H.; Yuan, H.; Janssen, K. P. F.; Solís-Fernández, G.; Wang, Y.; Tan, C. Y. X.; Jonckheere, D.; Debroye, E.; Long, J.; Hendrix, J.; Hofkens, J.; Steele, J. A.; Roeffaers, M. B. J. ACS Energy Lett. 2018, 3, 755.  doi: 10.1021/acsenergylett.8b00131

    78. [78]

      Kanai, M. Science 2018, 361, 647.  doi: 10.1126/science.aau5379

    79. [79]

      Wang, P.; Guo, S.; Wang, H. J.; Chen, K. K.; Zhang, N.; Zhang, Z. M.; Lu, T. B. Nat. Commun. 2019, 10, 3155.  doi: 10.1038/s41467-019-11099-8

    80. [80]

      Mishra, G.; Mukhopadhyay, M. Sci. Rep. 2019, 9, 4345.  doi: 10.1038/s41598-019-40775-4

    81. [81]

      Fu, M. C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.  doi: 10.1126/science.aav3200

    82. [82]

      Li, X.; Yu, J.; Jaroniec, M.; Chen, X. Chem. Rev. 2019, 119, 3962.  doi: 10.1021/acs.chemrev.8b00400

    83. [83]

      Kim, J. H.; Jo, Y.; Kim, J. H.; Jang, J. W.; Kang, H. J.; Lee, Y. H.; Kim, D. S.; Jun, Y.; Lee, J. S. ACS Nano 2015, 9, 11820.  doi: 10.1021/acsnano.5b03859

    84. [84]

      Luo, J.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Gratzel, M. Science 2014, 345, 1593.  doi: 10.1126/science.1258307

    85. [85]

      Andrei, V.; Hoye, R. L. Z.; Crespo-Quesada, M.; Bajada, M.; Ahmad, S.; De Volder, M.; Friend, R.; Reisner, E. Adv. Energy Mater. 2018, 8, 1801403.  doi: 10.1002/aenm.201801403

    86. [86]

      Luo, J. S.; Vermaas, D. A.; Bi, D. Q.; Hagfeldt, A.; Smith, W. A.; Gratzel, M. Adv. Energy Mater. 2016, 6, 1600100.  doi: 10.1002/aenm.201600100

    87. [87]

      Da, P.; Cha, M.; Sun, L.; Wu, Y.; Wang, Z. S.; Zheng, G. Nano Lett. 2015, 15, 3452.  doi: 10.1021/acs.nanolett.5b00788

    88. [88]

      Zhang, H. F.; Yang, Z.; Yu, W.; Wang, H.; Ma, W. G.; Zong, X.; Li, C. Adv. Energy Mater. 2018, 8, 1800795.  doi: 10.1002/aenm.201800795

    89. [89]

      Crespo-Quesada, M.; Pazos-Outon, L. M.; Warnan, J.; Kuehnel, M. F.; Friend, R. H.; Reisner, E. Nat. Commun. 2016, 7, 12555.  doi: 10.1038/ncomms12555

    90. [90]

      Nam, S.; Mai, C. T. K.; Oh, I. ACS Appl. Mater. Interfaces 2018, 10, 14659.  doi: 10.1021/acsami.8b00686

    91. [91]

      Gao, L. F.; Luo, W. J.; Yao, Y. F.; Zou, Z. G. Chem. Commun. (Camb.) 2018, 54, 11459.  doi: 10.1039/C8CC06952B

    92. [92]

      Ahmad, S.; Sadhanala, A.; Hoye, R. L. Z.; Andrei, V.; Modarres, M. H.; Zhao, B.; Ronge, J.; Friend, R.; De Volder, M. ACS Appl. Mater. Interfaces 2019, 11, 23198.  doi: 10.1021/acsami.9b04963

    93. [93]

      Luo, J.; Yang, H.; Liu, Z.; Li, F.; Liu, S.; Ma, J.; Liu, B. Mater. Today Chem. 2019, 12, 1.  doi: 10.1016/j.mtchem.2018.11.001

    94. [94]

      Kim, I. S.; Pellin, M. J.; Martinson, A. B. F. ACS Energy Lett. 2019, 4, 293.  doi: 10.1021/acsenergylett.8b01661

    95. [95]

      Poli, I.; Hintermair, U.; Regue, M.; Kumar, S.; Sackville, E. V.; Baker, J.; Watson, T. M.; Eslava, S.; Cameron, P. J. Nat. Commun. 2019, 10, 2097.  doi: 10.1038/s41467-019-10124-0

    96. [96]

      Tao, R.; Sun, Z. X.; Li, F. Y.; Fang, W. C.; Xu, L. ACS Appl. Energy Mater. 2019, 2, 1969.  doi: 10.1021/acsaem.8b02072

    97. [97]

      Park, S.; Chang, W. J.; Lee, C. W.; Park, S.; Ahn, H.-Y.; Nam, K. T. Nat. Energy 2016, 2, 16185.
       

    98. [98]

      Wang, L.; Xiao, H.; Cheng, T.; Li, Y.; Goddard, W. A., 3rd, J. Am. Chem. Soc. 2018, 140, 1994.  doi: 10.1021/jacs.7b12028

    99. [99]

      Wu, Y.; Wang, P.; Guan, Z.; Liu, J.; Wang, Z.; Zheng, Z.; Jin, S.; Dai, Y.; Whangbo, M.-H.; Huang, B. ACS Catalysis 2018, 8, 10349.  doi: 10.1021/acscatal.8b02374

    100. [100]

      Zhao, Z.; Wu, J.; Zheng, Y.-Z.; Li, N.; Li, X.; Ye, Z.; Lu, S.; Tao, X.; Chen, C. Appl. Catal. B-Environ. 2019, 253, 41.  doi: 10.1016/j.apcatb.2019.04.050

    101. [101]

      Wang, X.; Wang, H.; Zhang, H.; Yu, W.; Wang, X.; Zhao, Y.; Zong, X.; Li, C. ACS Energy Lett. 2018, 3, 1159.  doi: 10.1021/acsenergylett.8b00488

    102. [102]

      Wang, H.; Wang, X.; Chen, R.; Zhang, H.; Wang, X.; Wang, J.; Zhang, J.; Mu, L.; Wu, K.; Fan, F.; Zong, X.; Li, C. ACS Energy Lett. 2018, 4, 40.

    103. [103]

      Kanhere, P.; Chen, Z. Molecules 2014, 19, 19995.  doi: 10.3390/molecules191219995

    104. [104]

      Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. Solar RRL 2017, 1, 1700126.
       

    105. [105]

      Hou, J.; Cao, S.; Wu, Y.; Gao, Z.; Liang, F.; Sun, Y.; Lin, Z.; Sun, L. Chemistry 2017, 23, 9481.  doi: 10.1002/chem.201702237

    106. [106]

      Li, Z.-J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C.-H.; Wu, L.-Z.; Zheng, W. Adv. Funct. Mater. 2018, 28, 1704288.  doi: 10.1002/adfm.201704288

    107. [107]

      Zhang, Y.-Y.; Chen, S.; Xu, P.; Xiang, H.; Gong, X.-G.; Walsh, A.; Wei, S.-H. Chinese Phys. Lett. 2018, 35, 036104.  doi: 10.1088/0256-307X/35/3/036104

    108. [108]

      Jiang, Y.; Liao, J. F.; Xu, Y. F.; Chen, H. Y.; Wang, X. D.; Kuang, D. B. J. Mater. Chem. A 2019, 7, 13762.  doi: 10.1039/C9TA03478A

    109. [109]

      Tang, C.; Chen, C. Y.; Xu, W. W.; Xu, L. J. Mater. Chem. A 2019, 7, 6911.  doi: 10.1039/C9TA00550A

    110. [110]

      Aamir, M.; Shah, Z. H.; Sher, M.; Iqbal, A.; Revaprasadu, N.; Malik, M. A.; Akhtar, J. Mater. Sci. Semicond. Process. 2017, 63, 6.  doi: 10.1016/j.mssp.2017.01.001

    111. [111]

      Wang, Y. D.; Luo, L. F.; Chen, L.; Ng, P. F.; Lee, K. I.; Fei, B. ChemNanoMat 2018, 4, 1054.  doi: 10.1002/cnma.201800277

    112. [112]

      Gao, G.; Xi, Q.; Zhou, H.; Zhao, Y.; Wu, C.; Wang, L.; Guo, P.; Xu, J. Nanoscale 2017, 9, 12032.  doi: 10.1039/C7NR04421F

    113. [113]

      Schunemann, S.; Tuysuz, H. Eur. J. Inorg. Chem. 2018, 2018, 2350.  doi: 10.1002/ejic.201800078

    114. [114]

      Mollick, S.; Mandal, T. N.; Jana, A.; Fajal, S.; Desai, A. V.; Ghosh, S. K. ACS Appl. Nano Mater. 2019, 2, 1333.  doi: 10.1021/acsanm.8b02214

    115. [115]

      Chen, K.; Deng, X.; Dodekatos, G.; Tuysuz, H. J. Am. Chem. Soc. 2017, 139, 12267.  doi: 10.1021/jacs.7b06413

    116. [116]

      Wong, Y. C.; De Andrew Ng, J.; Tan, Z. K. Adv. Mater. 2018, 30, e1800774.  doi: 10.1002/adma.201800774

    117. [117]

      Wu, W.-B.; Wong, Y.-C.; Tan, Z.-K.; Wu, J. Catal. Sci. Technol. 2018, 8, 4257.  doi: 10.1039/C8CY01240G

    118. [118]

      Hong, Z.; Chong, W. K.; Ng, A. Y. R.; Li, M.; Ganguly, R.; Sum, T. C.; Soo, H. S. Angew. Chem. Int. Ed. 2019, 58, 3456.  doi: 10.1002/anie.201812225

    119. [119]

      Zhu, X.; Lin, Y.; Sun, Y.; Beard, M. C.; Yan, Y. J. Am. Chem. Soc. 2019, 141, 733.  doi: 10.1021/jacs.8b08720

    120. [120]

      Zhu, X.; Lin, Y.; San Martin, J.; Sun, Y.; Zhu, D.; Yan, Y. Nat. Commun. 2019, 10, 2843.  doi: 10.1038/s41467-019-10634-x

    121. [121]

      Jellicoe, T. C.; Richter, J. M.; Glass, H. F.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C.; Bohm, M. L. J. Am. Chem. Soc. 2016, 138, 2941.  doi: 10.1021/jacs.5b13470

    122. [122]

      Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G. Nat. Photonics 2014, 8, 489.  doi: 10.1038/nphoton.2014.82

    123. [123]

      Ke, W.; Kanatzidis, M. G. Nat. Commun. 2019, 10, 965.  doi: 10.1038/s41467-019-08918-3

    124. [124]

      Zhang, W.; Zhao, Q.; Wang, X.; Yan, X.; Xu, J.; Zeng, Z. Catal. Sci. Technol. 2017, 7, 2753.  doi: 10.1039/C7CY00389G

    125. [125]

      Reyes-Perez, F.; Gallardo, J. J.; Aguilar, T.; Alcantara, R.; Fernandez-Lorenzo, C.; Navas, J. Chemistryselect 2018, 3, 10226.  doi: 10.1002/slct.201801564

    126. [126]

      Cardenas-Morcoso, D.; Gualdron-Reyes, A. F.; Ferreira Vitoreti, A. B.; Garcia-Tecedor, M.; Yoon, S. J.; Solis de la Fuente, M.; Mora-Sero, I.; Gimenez, S. J. Phys. Chem. Lett. 2019, 10, 630.  doi: 10.1021/acs.jpclett.8b03849

    127. [127]

      Yang, B.; Chen, J.; Yang, S.; Hong, F.; Sun, L.; Han, P.; Pullerits, T.; Deng, W.; Han, K. Angew. Chem. Int. Ed. 2018, 57, 5359.  doi: 10.1002/anie.201800660

    128. [128]

      Slavney, A. H.; Hu, T.; Lindenberg, A. M.; Karunadasa, H. I. J. Am. Chem. Soc. 2016, 138, 2138.  doi: 10.1021/jacs.5b13294

    129. [129]

      Liu, Y.-L.; Yang, C.-L.; Wang, M.-S.; Ma, X.-G.; Yi, Y.-G. J. Mater. Sci. 2018, 54, 4732.

  • 加载中
    1. [1]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    2. [2]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    11. [11]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    15. [15]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    20. [20]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

Metrics
  • PDF Downloads(155)
  • Abstract views(4004)
  • HTML views(1149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return