Citation: Xia Hailun, Hua Xin, Long Yi-Tao. Visualization of the Electrolyte Migration under Electrochemical Process by ToF-SIMS[J]. Acta Chimica Sinica, ;2019, 77(11): 1164-1167. doi: 10.6023/A19070281 shu

Visualization of the Electrolyte Migration under Electrochemical Process by ToF-SIMS

  • Corresponding author: Hua Xin, xinhua@ecust.edu.cn Long Yi-Tao, yitaolong@nju.edu.cn
  • Received Date: 27 July 2019
    Available Online: 9 November 2019

    Fund Project: the National Natural Science Foundation of China 21705046the National Natural Science Foundation of China 21834001Project supported by the National Natural Science Foundation of China (Nos. 21834001, 21705046)

Figures(3)

  • The essence of electrochemical reaction was the electron transfer process on the electrode while the premise for electrochemical reaction happening was the migration and diffusion of electro-active species. Interpreting the monitoring process of electrode towards the electro-active species during the electrochemical reaction would really do favor to the further understanding of the electrochemical evolution process at the electrode-electrolyte interface. In this work, time-of-flight secondary ion mass spectrometry (ToF-SIMS) was adopted for the in-situ monitoring of the electrode-electrolyte interface during the electrochemical reaction with the cooperation of a microfluidic electrochemical cell which was constructed for the liquid sample analysis under the high vacuum environment. With the application of the primary ion beam on the silicon nitride membrane of the microfluidic cell, a micro-hole with the diameter of 2 μm would be fabricated for the direct monitoring of the electrode-electrolyte interface. The migration process of KCl aqueous solution in the confined micropore under the monitoring of gold electrode was investigated by ToF-SIMS here. The direct observation of K+(H2O)n and H+(H2O)n in the electrolyte provided information of the electrode-electrolyte interface at molecular level. Besides, the chemical distributions of K+ and H+(H2O)n under different potential were also studied to verify the feasibility of pore-confined ToF-SIMS in visualizing electrochemical evolution process on the electrode-electrolyte interface. The chemical distributions of K+ and H+(H2O)n obtained by ToF-SIMS showed that K+ would enrich to the surface of gold electrode when the negative potential was applied but diffuse to the bulk solution when positive potential was applied. For H+(H2O)n, they would be repulsed away from the electrode when the positive potential was applied and enrich to the surface of electrode when the negative potential was applied. The potential-dependent behaviors of K+ and H+(H2O)n indicated that visualization of the migration process of electrolyte on the electrode-electrolyte interface was realized, which may help the further study of the evolution at electrode-electrolyte interface during the electrochemical reaction, providing new insight into the revealment of the mechanism of electrochemical reaction.
  • 加载中
    1. [1]

      Sheng, W.; Gasteiger, H. A.; Shao-Horn, Y. J. Electrochem. Soc. 2010, 157, B1529.  doi: 10.1149/1.3483106

    2. [2]

      Duan, X.; Gao, Z.; Chang, J.; Wu, D.; Ma, P.; He, J.; Xu, F.; Gao, S.; Jiang, K. Electrochim. Acta 2013, 114, 173.  doi: 10.1016/j.electacta.2013.10.045

    3. [3]

      Tanim, T. R.; Rahn, C. D.; Wang, C.-Y. J. Dyn. Syst. Meas. Control. 2015, 137, 11005.  doi: 10.1115/1.4028154

    4. [4]

      Rosca, V.; Beltramo, G. L.; Koper, M. T. M. J. Electroanal. Chem. 2004, 566, 53.  doi: 10.1016/j.jelechem.2003.11.011

    5. [5]

      Ramesha, G. K.; Sampath, S. J. Phys. Chem. C 2009, 113, 7985.  doi: 10.1021/jp811377n

    6. [6]

      Zhang, J.; Christensen, H. E. M.; Ooi, B. L.; Ulstrup, J. Langmuir 2004, 20, 10200.  doi: 10.1021/la048853i

    7. [7]

      Endres, F.; Borisenko, N.; El Abedin, S. Z.; Hayes, R.; Atkin, R. Faraday Discuss. 2012, 154, 221.  doi: 10.1039/C1FD00050K

    8. [8]

      Zeng, Z.; Liang, W.-I.; Liao, H.-G.; Xin, H. L.; Chu, Y.-H.; Zheng, H. Nano Lett. 2014, 14, 1745.  doi: 10.1021/nl403922u

    9. [9]

      Liu, X. H.; Huang, J. Y. Energy Environ. Sci. 2011, 4, 3844.  doi: 10.1039/c1ee01918j

    10. [10]

      Liu, X.; Wang, D.; Liu, G.; Srinivasan, V.; Liu, Z.; Hussain, Z.; Yang, W. Nat. Commun. 2013, 4, 2568.  doi: 10.1038/ncomms3568

    11. [11]

      Wagner, M. R.; Albering, J. H.; Moeller, K.-C.; Besenhard, J. O.; Winter, M. Electrochem. Commun. 2005, 7, 947.  doi: 10.1016/j.elecom.2005.06.009

    12. [12]

      Lu, J.; Hua, X.; Long, Y.-T. Analyst 2017, 142, 691.  doi: 10.1039/C6AN02757A

    13. [13]

      Li, H.-W.; Hua, X.; Long, Y.-T. Anal. Bioanal. Chem. 2019, 411, 4025.  doi: 10.1007/s00216-019-01686-5

    14. [14]

      Hua, X.; Li, H.-W.; Long, Y.-T. Anal. Chem. 2017, 90, 1072.

    15. [15]

      Li, H.-W.; Hua, X.; Long, Y.-T. Chinese J. Anal. Chem. 2018, 46, 61.
       

    16. [16]

      Lee, J. C.; Won, J.; Chung, Y.; Lee, H.; Lee, E.; Kang, D.; Kim, C.; Choi, J.; Kim, J. Appl. Surf. Sci. 2008, 255, 1395.  doi: 10.1016/j.apsusc.2008.06.129

    17. [17]

      Liu, Y.-Y.; Ying, Y.-L.; Hua, X.; Long, Y.-T. Sci. China Chem. 2018, 61, 159.

    18. [18]

      Liu, B.; Yu, X.-Y.; Zhu, Z.; Hua, X.; Yang, L.; Wang, Z. Lab Chip 2014, 14, 855.  doi: 10.1039/C3LC50971K

    19. [19]

      Hua, X.; Xia, H.-L.; Long, Y.-T. Chem. Sci. 2019, 10, 6215.  doi: 10.1039/C9SC00956F

    20. [20]

      Wang, J.-G.; Zhang, Y.; Yu, X.; Hua, X.; Wang, F.; Long, Y.-T.; Zhu, Z. J. Phys. Chem. Lett. 2018, 10, 251.

    21. [21]

      Zhang, Y.; Wang, J.; Yu, X.; Baer, D. R.; Zhao, Y.; Mao, L.; Wang, F.; Zhu, Z. ACS Energy Lett. 2018, 4, 215.

    22. [22]

      Wang, Z.; Zhang, Y.; Liu, B.; Wu, K.; Thevuthasan, S.; Baer, D. R.; Zhu, Z.; Yu, X.; Wang, F. 2017, 89, 6.

    23. [23]

      Tabor, R. F.; Morfa, A. J.; Grieser, F.; Chan, D. Y. C.; Dagastine, R. R. Langmuir 2011, 27, 6026.  doi: 10.1021/la200166r

  • 加载中
    1. [1]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    6. [6]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    10. [10]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    11. [11]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    17. [17]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    18. [18]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    19. [19]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    20. [20]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

Metrics
  • PDF Downloads(10)
  • Abstract views(808)
  • HTML views(173)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return