Citation: Li Xuefei, Chen Ling, Xu Shengchao, Zhao Wenbo. Liquid-liquid Phase-change Absorption of SO2 Using N, N-Dimethyl-n-octylamine Mixed with Hexadecane[J]. Acta Chimica Sinica, ;2019, 77(12): 1287-1293. doi: 10.6023/A19070279 shu

Liquid-liquid Phase-change Absorption of SO2 Using N, N-Dimethyl-n-octylamine Mixed with Hexadecane

  • Corresponding author: Zhao Wenbo, wenshuixing@126.com
  • Received Date: 26 July 2019
    Available Online: 18 December 2019

    Fund Project: the National Natural Science Foundation of China 21666011Project supported by the National Natural Science Foundation of China (No. 21666011)

Figures(12)

  • A novel liquid-liquid phase-change organic amine mixed absorbent for the removal of sulfur dioxide (SO2) was developed. This absorbent could surmount the shortcomings that the atmosphere is contaminated by volatile organic solvents and a lot of energy is consumed in the process of recovering solvent in the traditional flue gas desulfurization process. The homogeneous absorption solution consists of stronger alkaline N, N-dimethyl-n-octylamine (DMOA) as absorbent and high-boiling hexadecane as a solvent, because hexadecane is the best one among various kinds of solvents tested. The solution would be automatically separated into two immiscible phases after introducing SO2 and setting. Hexadecane was in the upper phase and the absorption product of SO2 and DMOA was in the lower phase after absorption. The former could be directly recycled, and the latter could be recovered by removing SO2 from the lower phase. The absorption product was proved to be a charge-transfer complex by 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR). Subsequently, the effects of temperature, concentration and SO2 partial pressure on absorption capacity and cycle absorption performance were studied. The absorption capacity was determined by passing SO2 through the solution in gas bottle and weighing the system including the bottle and the solution. The desorption capacity was determined by passing N2 through the solution absorbed SO2, and then the content of each component in different phases was determined by gas chromatography using internal standard method. It was found that the mole absorption capacity was 2.1 mol SO2/mol DMOA under the condition of 1.013×105 Pa and 20℃, which was 38 times as much as the absorption capacity of carbon dioxide (CO2). The absorbent revealed the good cycle absorption performance in the experiment, and the DMOA could be completely regenerated under 1.013×105 Pa and 120℃. All the results showed that the mixed absorbent has good prospects for SO2 capture.
  • 加载中
    1. [1]

      Gholizadeh, F.; Kamgar, A.; Roostaei, M.; Rahimpour, M. R. J. Mol. Liq. 2018, 272, 878.  doi: 10.1016/j.molliq.2018.09.137

    2. [2]

      Zhao, T. X.; Li, Y. F.; Zhang, Y. T.; Wu, Y. T.; Hu, X. B. ACS Sustainable Chem. Eng. 2018, 6, 10886.  doi: 10.1021/acssuschemeng.8b02182

    3. [3]

      Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J. Angew. Chem. 2010, 43, 2415.

    4. [4]

      Hansen, B. B.; Kiil, S.; Johnsson, J. E.; Sønder, K. B. Ind. Eng. Chem. Res. 2008, 47, 88.

    5. [5]

      Ma, X. X.; Takao, K.; Kaneko, T.; Tashimo, T.; Yoshida, T.; Kato, K. Chem. Eng. Sci. 2000, 55, 4643.  doi: 10.1016/S0009-2509(00)00090-7

    6. [6]

      Hong, S. Y.; Kim, H.; Kim, Y. J.; Jeong, J.; Cheong, M.; Lee, H.; Kim, H. S.; Lee, J. S. J. Hazard. Mater. 2014, 264, 136.  doi: 10.1016/j.jhazmat.2013.11.026

    7. [7]

      Srivastava, R. K.; Jozewicz, W.; Singer, C. Environ. Prog. Sustainable Energy. 2010, 20, 219.

    8. [8]

      Lei, Z. G.; Chen, B. H.; Koo, Y. M.; MacFarlane, D. R. Chem. Rev. 2017, 117, 6633.  doi: 10.1021/acs.chemrev.7b00246

    9. [9]

      Liu, B. Y.; Zhang, P. W. Chin. J. Org. Chem. 2018, 38, 3176.

    10. [10]

      Huang, K.; Lu, J. F.; Wu, Y. T.; Hu, X. B.; Zhang, Z. B. Chem. Eng. J. 2013, 215, 36.

    11. [11]

      Xu, Z. C.; Wang, S. J.; Chen, C. H. Int. J. Greenhouse Gas Control. 2013, 16, 107.  doi: 10.1016/j.ijggc.2013.03.013

    12. [12]

      Zhang, W. D.; Jin, X. H.; Tu, W. W.; Ma, Q.; Mao, M. L.; Cui, C. H. Appl. Energy. 2017, 195, 316.  doi: 10.1016/j.apenergy.2017.03.050

    13. [13]

      Luo, W. L.; Guo, D. F.; Zheng, J. H.; Gao, S. W.; Chen, J. Int. J. Greenhouse Gas Control. 2016, 53, 141.  doi: 10.1016/j.ijggc.2016.07.036

    14. [14]

      Barzagli, F.; Mani, F.; Peruzzini, M. Int. J. Greenhouse Gas Control. 2017, 60, 100.  doi: 10.1016/j.ijggc.2017.03.010

    15. [15]

      Li, Y. N.; Cheng, J.; Hu, L. Q.; Liu, J. Z.; Zhou, J. H.; Cen, K. F. Fuel. 2018, 216, 418.  doi: 10.1016/j.fuel.2017.12.030

    16. [16]

      Shen, S. F.; Bian, Y. Y.; Zhao, Y. Int. J. Greenhouse Gas Control. 2017, 56, 1.  doi: 10.1016/j.ijggc.2016.11.011

    17. [17]

      Wang, Y.; Zhao, W. B.; Chai, M.Y.; Li, G. M.; Jia, Q. M.; Chen, Y. Energ. Fuel. 2017, 31, 13999.  doi: 10.1021/acs.energyfuels.7b02694

    18. [18]

      Zhao, W. B.; Zhao, Q.; Zhang, Z.; Liu, J. J.; Chen, R.; Chen, Y.; Chen, J. Fuel. 2017, 209, 69.  doi: 10.1016/j.fuel.2017.07.081

    19. [19]

      Raksajati, A.; Ho, M. T.; Wiley, D. E. Ind. Eng. Chem. Res. 2016, 55, 1980.  doi: 10.1021/acs.iecr.5b03633

    20. [20]

      WuHan University, Analytical Chemistry, Vol. I, Higher Education Press, Beijing, 2006, pp. 110~157 (in Chinese).

    21. [21]

      Ying, S.; Li, H. P.; Zhang, S. J.; Hui, X.; Wang, Z. X.; Li, Z.; Zhang, J. M. Chem. Eng. J. 2011, 175, 324.

    22. [22]

      Faria, D. L. A.; Santos, P. S. J. Raman Spectrosc. 2010, 19, 471.

    23. [23]

      Ando, R. A.; Matazo, D. R. C.; Santos, P. S. J. Raman Spectrosc. 2010, 41, 771.

    24. [24]

      Deng, D. S.; Liu, X. B.; Bao, G. Ind. Eng. Chem. Res. 2017, 56, 46.

    25. [25]

      Han, G. Q.; Jiang, Y. T.; Deng, D. S.; Ai, N. J. Chem. Thermodyn. 2016, 92, 207.  doi: 10.1016/j.jct.2015.09.017

    26. [26]

      Yang, D. Z.; Hou, M. Q.; Ning, H.; Zhang, J. L.; Ma, J.; Han, B. X. Phys. Chem. Chem. Phys. 2013, 15, 18123.  doi: 10.1039/c3cp52911h

    27. [27]

      Garea, A.; Fernández, I.; Viguri, J. R.; Ortiz, M. I.; Fernández, J.; Renedo, M. J.; Irabien, J. A. Chem. Eng. J. 1997, 66, 171.  doi: 10.1016/S1385-8947(96)03178-6

    28. [28]

      Al-Enezi, G.; Ettouney, H.; El-Dessouky, H.; Fawzi, N. Ind. Eng. Chem. Res. 2001, 40, 1434.  doi: 10.1021/ie9905963

    29. [29]

      Deng, D. S.; Liu, X. B.; Cui, Y. H.; Jiang, Y. T. J. Chem. Thermodyn. 2018, 119, 84.  doi: 10.1016/j.jct.2017.12.021

    30. [30]

      Yang, D. Z.; Cui, G.; Lv, M. Energ. Fuel. 2018, 32, 10796.  doi: 10.1021/acs.energyfuels.8b02488

    31. [31]

      Liu, B. Y.; Wei, F. X.; Zhao, J. J.; Wang, Y. Y. RSC Adv. 2013, 3, 2470.  doi: 10.1039/c2ra22990k

    32. [32]

      Chen, K. H.; Lin, W. J.; Yu, X. N.; Luo, X. Y.; Wang, C. M. AIChE J. 2015, 61, 2028.  doi: 10.1002/aic.14793

    33. [33]

      Xu, X. C.; Song, C. S.; Wincek, R.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Fuel Chem. Div. Prepr. 2003, 48, 162.

    34. [34]

      Anderson, J. L.; Dixon, J. N. K.; Maginn, E. J.; Brennecke, J. F. J. Phys. Chem. B 2006, 110, 15059.  doi: 10.1021/jp063547u

    35. [35]

      Shiflett, M. B.; Yokozeki, A. J. Chem. Eng. Data 2008, 54, 108.

  • 加载中
    1. [1]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    2. [2]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    3. [3]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    4. [4]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    5. [5]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    11. [11]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    12. [12]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    15. [15]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    18. [18]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    19. [19]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(4)
  • Abstract views(929)
  • HTML views(98)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return