Citation: Li Xuefei, Chen Ling, Xu Shengchao, Zhao Wenbo. Liquid-liquid Phase-change Absorption of SO2 Using N, N-Dimethyl-n-octylamine Mixed with Hexadecane[J]. Acta Chimica Sinica, ;2019, 77(12): 1287-1293. doi: 10.6023/A19070279 shu

Liquid-liquid Phase-change Absorption of SO2 Using N, N-Dimethyl-n-octylamine Mixed with Hexadecane

  • Corresponding author: Zhao Wenbo, wenshuixing@126.com
  • Received Date: 26 July 2019
    Available Online: 18 December 2019

    Fund Project: the National Natural Science Foundation of China 21666011Project supported by the National Natural Science Foundation of China (No. 21666011)

Figures(12)

  • A novel liquid-liquid phase-change organic amine mixed absorbent for the removal of sulfur dioxide (SO2) was developed. This absorbent could surmount the shortcomings that the atmosphere is contaminated by volatile organic solvents and a lot of energy is consumed in the process of recovering solvent in the traditional flue gas desulfurization process. The homogeneous absorption solution consists of stronger alkaline N, N-dimethyl-n-octylamine (DMOA) as absorbent and high-boiling hexadecane as a solvent, because hexadecane is the best one among various kinds of solvents tested. The solution would be automatically separated into two immiscible phases after introducing SO2 and setting. Hexadecane was in the upper phase and the absorption product of SO2 and DMOA was in the lower phase after absorption. The former could be directly recycled, and the latter could be recovered by removing SO2 from the lower phase. The absorption product was proved to be a charge-transfer complex by 1H nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR). Subsequently, the effects of temperature, concentration and SO2 partial pressure on absorption capacity and cycle absorption performance were studied. The absorption capacity was determined by passing SO2 through the solution in gas bottle and weighing the system including the bottle and the solution. The desorption capacity was determined by passing N2 through the solution absorbed SO2, and then the content of each component in different phases was determined by gas chromatography using internal standard method. It was found that the mole absorption capacity was 2.1 mol SO2/mol DMOA under the condition of 1.013×105 Pa and 20℃, which was 38 times as much as the absorption capacity of carbon dioxide (CO2). The absorbent revealed the good cycle absorption performance in the experiment, and the DMOA could be completely regenerated under 1.013×105 Pa and 120℃. All the results showed that the mixed absorbent has good prospects for SO2 capture.
  • 加载中
    1. [1]

      Gholizadeh, F.; Kamgar, A.; Roostaei, M.; Rahimpour, M. R. J. Mol. Liq. 2018, 272, 878.  doi: 10.1016/j.molliq.2018.09.137

    2. [2]

      Zhao, T. X.; Li, Y. F.; Zhang, Y. T.; Wu, Y. T.; Hu, X. B. ACS Sustainable Chem. Eng. 2018, 6, 10886.  doi: 10.1021/acssuschemeng.8b02182

    3. [3]

      Wu, W. Z.; Han, B. X.; Gao, H. X.; Liu, Z. M.; Jiang, T.; Huang, J. Angew. Chem. 2010, 43, 2415.

    4. [4]

      Hansen, B. B.; Kiil, S.; Johnsson, J. E.; Sønder, K. B. Ind. Eng. Chem. Res. 2008, 47, 88.

    5. [5]

      Ma, X. X.; Takao, K.; Kaneko, T.; Tashimo, T.; Yoshida, T.; Kato, K. Chem. Eng. Sci. 2000, 55, 4643.  doi: 10.1016/S0009-2509(00)00090-7

    6. [6]

      Hong, S. Y.; Kim, H.; Kim, Y. J.; Jeong, J.; Cheong, M.; Lee, H.; Kim, H. S.; Lee, J. S. J. Hazard. Mater. 2014, 264, 136.  doi: 10.1016/j.jhazmat.2013.11.026

    7. [7]

      Srivastava, R. K.; Jozewicz, W.; Singer, C. Environ. Prog. Sustainable Energy. 2010, 20, 219.

    8. [8]

      Lei, Z. G.; Chen, B. H.; Koo, Y. M.; MacFarlane, D. R. Chem. Rev. 2017, 117, 6633.  doi: 10.1021/acs.chemrev.7b00246

    9. [9]

      Liu, B. Y.; Zhang, P. W. Chin. J. Org. Chem. 2018, 38, 3176.

    10. [10]

      Huang, K.; Lu, J. F.; Wu, Y. T.; Hu, X. B.; Zhang, Z. B. Chem. Eng. J. 2013, 215, 36.

    11. [11]

      Xu, Z. C.; Wang, S. J.; Chen, C. H. Int. J. Greenhouse Gas Control. 2013, 16, 107.  doi: 10.1016/j.ijggc.2013.03.013

    12. [12]

      Zhang, W. D.; Jin, X. H.; Tu, W. W.; Ma, Q.; Mao, M. L.; Cui, C. H. Appl. Energy. 2017, 195, 316.  doi: 10.1016/j.apenergy.2017.03.050

    13. [13]

      Luo, W. L.; Guo, D. F.; Zheng, J. H.; Gao, S. W.; Chen, J. Int. J. Greenhouse Gas Control. 2016, 53, 141.  doi: 10.1016/j.ijggc.2016.07.036

    14. [14]

      Barzagli, F.; Mani, F.; Peruzzini, M. Int. J. Greenhouse Gas Control. 2017, 60, 100.  doi: 10.1016/j.ijggc.2017.03.010

    15. [15]

      Li, Y. N.; Cheng, J.; Hu, L. Q.; Liu, J. Z.; Zhou, J. H.; Cen, K. F. Fuel. 2018, 216, 418.  doi: 10.1016/j.fuel.2017.12.030

    16. [16]

      Shen, S. F.; Bian, Y. Y.; Zhao, Y. Int. J. Greenhouse Gas Control. 2017, 56, 1.  doi: 10.1016/j.ijggc.2016.11.011

    17. [17]

      Wang, Y.; Zhao, W. B.; Chai, M.Y.; Li, G. M.; Jia, Q. M.; Chen, Y. Energ. Fuel. 2017, 31, 13999.  doi: 10.1021/acs.energyfuels.7b02694

    18. [18]

      Zhao, W. B.; Zhao, Q.; Zhang, Z.; Liu, J. J.; Chen, R.; Chen, Y.; Chen, J. Fuel. 2017, 209, 69.  doi: 10.1016/j.fuel.2017.07.081

    19. [19]

      Raksajati, A.; Ho, M. T.; Wiley, D. E. Ind. Eng. Chem. Res. 2016, 55, 1980.  doi: 10.1021/acs.iecr.5b03633

    20. [20]

      WuHan University, Analytical Chemistry, Vol. I, Higher Education Press, Beijing, 2006, pp. 110~157 (in Chinese).

    21. [21]

      Ying, S.; Li, H. P.; Zhang, S. J.; Hui, X.; Wang, Z. X.; Li, Z.; Zhang, J. M. Chem. Eng. J. 2011, 175, 324.

    22. [22]

      Faria, D. L. A.; Santos, P. S. J. Raman Spectrosc. 2010, 19, 471.

    23. [23]

      Ando, R. A.; Matazo, D. R. C.; Santos, P. S. J. Raman Spectrosc. 2010, 41, 771.

    24. [24]

      Deng, D. S.; Liu, X. B.; Bao, G. Ind. Eng. Chem. Res. 2017, 56, 46.

    25. [25]

      Han, G. Q.; Jiang, Y. T.; Deng, D. S.; Ai, N. J. Chem. Thermodyn. 2016, 92, 207.  doi: 10.1016/j.jct.2015.09.017

    26. [26]

      Yang, D. Z.; Hou, M. Q.; Ning, H.; Zhang, J. L.; Ma, J.; Han, B. X. Phys. Chem. Chem. Phys. 2013, 15, 18123.  doi: 10.1039/c3cp52911h

    27. [27]

      Garea, A.; Fernández, I.; Viguri, J. R.; Ortiz, M. I.; Fernández, J.; Renedo, M. J.; Irabien, J. A. Chem. Eng. J. 1997, 66, 171.  doi: 10.1016/S1385-8947(96)03178-6

    28. [28]

      Al-Enezi, G.; Ettouney, H.; El-Dessouky, H.; Fawzi, N. Ind. Eng. Chem. Res. 2001, 40, 1434.  doi: 10.1021/ie9905963

    29. [29]

      Deng, D. S.; Liu, X. B.; Cui, Y. H.; Jiang, Y. T. J. Chem. Thermodyn. 2018, 119, 84.  doi: 10.1016/j.jct.2017.12.021

    30. [30]

      Yang, D. Z.; Cui, G.; Lv, M. Energ. Fuel. 2018, 32, 10796.  doi: 10.1021/acs.energyfuels.8b02488

    31. [31]

      Liu, B. Y.; Wei, F. X.; Zhao, J. J.; Wang, Y. Y. RSC Adv. 2013, 3, 2470.  doi: 10.1039/c2ra22990k

    32. [32]

      Chen, K. H.; Lin, W. J.; Yu, X. N.; Luo, X. Y.; Wang, C. M. AIChE J. 2015, 61, 2028.  doi: 10.1002/aic.14793

    33. [33]

      Xu, X. C.; Song, C. S.; Wincek, R.; Andresen, J. M.; Miller, B. G.; Scaroni, A. W. Fuel Chem. Div. Prepr. 2003, 48, 162.

    34. [34]

      Anderson, J. L.; Dixon, J. N. K.; Maginn, E. J.; Brennecke, J. F. J. Phys. Chem. B 2006, 110, 15059.  doi: 10.1021/jp063547u

    35. [35]

      Shiflett, M. B.; Yokozeki, A. J. Chem. Eng. Data 2008, 54, 108.

  • 加载中
    1. [1]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    2. [2]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    3. [3]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    4. [4]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    5. [5]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    6. [6]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    7. [7]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    12. [12]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    17. [17]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    18. [18]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    19. [19]

      Shengwen GuanZhaotong WeiNingxu HanYude WeiBin XuMing WangJunjuan Shi . Construction of metallo-complexes with 2,2′:6′,2″-terpyridine substituted triphenylamine in different modified positions and their photophysical properties. Chinese Chemical Letters, 2024, 35(7): 109348-. doi: 10.1016/j.cclet.2023.109348

    20. [20]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

Metrics
  • PDF Downloads(4)
  • Abstract views(837)
  • HTML views(93)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return