Citation: Shi Lei, Pang Hongwei, Wang Xiangxue, Zhang Pan, Yu Shujun. Study on the Migration and Transformation Mechanism of Graphene Oxide in Aqueous Solutions[J]. Acta Chimica Sinica, ;2019, 77(11): 1177-1183. doi: 10.6023/A19070276 shu

Study on the Migration and Transformation Mechanism of Graphene Oxide in Aqueous Solutions

  • Corresponding author: Yu Shujun, sjyu@ncepu.edu.cn
  • Received Date: 26 July 2019
    Available Online: 24 November 2019

Figures(5)

  • Graphene oxide (GO) is widely used in energy chemical, environmental restoration, nanomaterials, liquid phase catalysis, etc. due to its excellent physical and chemical properties. At the same time, GO is inevitably discharged into nature during the application process, and the toxicity released into the environment may lead to instability of the biological system. Therefore, this paper systematically studied several common cations (Na+, K+, Ca2+, Mg2+), anions (PO43-, SO42-, CO32-, HCO3-, Cl-) and clay minerals (montmorillonite, kaolin, bentonite, nano-alumina) on GO coagulation at different concentrations. And FTIR is used to characterize the clay minerals before and after the precipitation of GO. The experimental results show that the cations have strong GO coagulation ability, and the coagulation ability of different valence cations has a large difference. After analysis, the electrical properties of GO in aqueous solution are negative, the cation acts as a counter ion, and the coagulation behavior conforms to the Schulze-Hardy rule. The main reason for the difference in coagulation ability between isovalent cations is electronegativity and ionic hydration. The anion acts to increase the stability of GO, and the coagulation ability of the cation is more effective than the stabilization ability of the anion. The ability of sodium salts with the same valence anion to coagulate GO also differs, mainly because the hydrolysis of HCO3- and CO32- causes a decrease in the negative charges, resulting in a decrease in the ability to stabilize GO. The clay minerals contain hydroxyl and metal-oxygen bonds that interact with GO. According to the maximum removal rate, the clay minerals have the coagulation ability:nano-alumina > kaolin > bentonite > montmorillonite. The main influencing factors are the electrical properties of clay minerals in aqueous solution. This paper is helpful to understand the coagulation behavior of GO in different water environments, and it is of great significance for the future application of graphene engineering in pollution control.
  • 加载中
    1. [1]

      Loh, K. P.; Bao, Q. L.; Ang, P. K.; Yang, J. X. J. Mater. Chem. 2010, 20, 2277.  doi: 10.1039/b920539j

    2. [2]

      Dreyer, D. R.; Park, S. J.; Bielawski, C. W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228.  doi: 10.1039/B917103G

    3. [3]

      Chen, D.; Feng, H.; Li, J. Chem. Rev. 2012, 112, 6027.  doi: 10.1021/cr300115g

    4. [4]

      Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, j.; Ruoff, R. S. Nano Lett. 2008, 8, 3498.  doi: 10.1021/nl802558y

    5. [5]

      Zhao, K. L.; Hao, Y.; Zhu, M.; Cheng, G. S. Acta Chim. Sinica. 2018, 76, 168(in Chinese).  doi: 10.3866/PKU.WHXB201707111
       

    6. [6]

      Zhang, S. W.; Zhang, J.; Wu, S. D.; lv, W.; Kang, F. Y.; Yang, Q. H. Acta. Chim. Sinica. 2017, 75, 163(in Chinese).  doi: 10.11862/CJIC.2017.023
       

    7. [7]

      Zhong, G. Y.; Wang, H. J.; Yu, H.; Peng, F. Acta Chim. Sinica. 2017, 75, 943(in Chinese).
       

    8. [8]

      Wang, X.; Li, Y. B.; Du, L. Y.; Gao, F. J.; Wu, Q.; Yang, L. J.; Chen, Q.; Wang, X. J.; Hu, Z. Acta Chim. Sinica. 2018, 76, 627(in Chinese).  doi: 10.11862/CJIC.2018.081
       

    9. [9]

      Lu, J. H.; Tan, S. Z.; Zhu, Y. Q.; Li, W.; Chen, T. X.; Wang, Y.; Liu, C. Acta Chim. Sinica. 2019, 77, 253(in Chinese).
       

    10. [10]

      Ma, W. H.; Chang, Y. Z.; Han, G. Y.; Xiao, Y. M.; Fu, D. Y.; Chang, Y. H.; Chinese J. Chem. 2017, 35, 1844.  doi: 10.1002/cjoc.201700398

    11. [11]

      Yang, X. L.; Cai, H. Y.; Bao, M. Y.; Yu, J. Q.; Lu, J. R.; Li, Y. M. Chinese J. Chem. 2017, 35, 1549.  doi: 10.1002/cjoc.201700202

    12. [12]

      Li, M. Y.; Liu, R. Q.; Han, G. Y.; Tian, Y. N.; Chang, Y. Z.; Xiao, Y. M. Chinese J. Chem. 2017, 35, 1405.  doi: 10.1002/cjoc.201700061

    13. [13]

      Song, C. Y.; Sun, X.; Ye, K.; Zhu, K.; Cheng, H.; Yan, J.; Cao, D. X.; Wang, G. L. Acta. Chim. Sinica. 2017, 75, 1003(in Chinese).
       

    14. [14]

      Liao, K. H.; Lin, Y. S.; Macosko, C. W.; Haynes, C. L. ACS Appl. Mater. Interfaces 2011, 3, 2607.  doi: 10.1021/am200428v

    15. [15]

      Gao, Y.; Chen, K.; Ren, X. M.; Ahmed, A.; Tasawar, H.; Chen, C. L. Environ. Sci. Technol. 2018, 52, 12208.  doi: 10.1021/acs.est.8b02234

    16. [16]

      Gao, Y; Wu, J. C.; Ren, X. M.; Tan X. L.; Tasawar, H.; Ahmed, A.; Cheng, C.; Chen, C. L. Environ. Sci.:Nano 2017, 4, 1016.  doi: 10.1039/C7EN00052A

    17. [17]

      Gao, Y.; Ren, X. M.; Wu, J. C.; Tasawar, H.; Ahmed, A.; Cheng, C.; Chen, C. l. Environ. Sci.:Nano 2018, 5, 362.  doi: 10.1039/C7EN01012E

    18. [18]

      Wang, J.; Yao, W.; Gu, P. C.; Yu, S. J.; Wang, X. X.; Du, Y.; Wang, H. Q.; Chen, Z. S.; Hayat, T.; Wang, X. K. Cellulose 2016, 24, 85.

    19. [19]

      Vallabani, N. V. S.; Mittal, S.; Shukla, R. K.; Pandey, A. K.; Dhakate, S. R.; Pasricha, R.; Dhawan, A. J. Biomed. Nanotechnol. 2011, 7, 106.  doi: 10.1166/jbn.2011.1224

    20. [20]

      Akhavan, O.; Ghaderi, E. ACS Nano 2010, 4, 5731.  doi: 10.1021/nn101390x

    21. [21]

      Hu, J.; Zhang, C. X.; Jiang, L.; Fang, S. D.; Zhang, X. D.; Wang, X. K.; Meng, Y. D. J. Power Sources 2014, 248, 831.  doi: 10.1016/j.jpowsour.2013.09.099

    22. [22]

      Zaghouane-Boudiaf, H.; Boutahala, M.; Arab, L. Chem. Eng. J. 2012, 187, 142.  doi: 10.1016/j.cej.2012.01.112

    23. [23]

      Wang, J.; Wang, X. X.; Tan, L. Q.; Chen, Y. T.; Hayat, T.; Hu, J.; Alsaedi, A.; Ahmad, B.; Guo, W.; Wang, X. K. Chem. Eng. J. 2016, 297, 106.  doi: 10.1016/j.cej.2016.04.012

    24. [24]

      Meunier, N.; Drogui, P.; Montane, C.; Hausler, R.; Mercier, G.; Blais, J. F. J. Hazard. Mater. 2006, 137, 581.  doi: 10.1016/j.jhazmat.2006.02.050

    25. [25]

      Qiang, S. R.; Wang, M. Y.; Liang, J. J.; Zhao, X. L.; Fan, Q. H.; Geng, R. Y.; Luo, D. X.; Li, Z. B.; Zhang, L. Mater. Chem. Phys. 2020, 239, 122016.  doi: 10.1016/j.matchemphys.2019.122016

    26. [26]

      Yang, K. J.; Chen, B. L.; Zhu, X. Y.; Xing, B. S. Environ. Sci. Technol. 2016, 50, 11066.  doi: 10.1021/acs.est.6b04235

    27. [27]

      Chowdhury, I.; Mansukhani, N. D.; Guiney, L. M.; Hersam, M. C.; Bouchard, D. Environ. Sci. Technol. 2015, 49, 10886.  doi: 10.1021/acs.est.5b01866

    28. [28]

      Zeng, Z. Y.; Wang, Y. L.; Zhou, Q. B.; Yang, K.; Lin, D. H. Environ. Pollut. 2019, 250, 366.  doi: 10.1016/j.envpol.2019.03.112

    29. [29]

      Zhao, J.; Liu, F. F.; Wang, Z. Y.; Cao, X. S.; Xing, B. S. Environ. Sci. Technol. 2015, 49:2849.  doi: 10.1021/es505605w

    30. [30]

      Liang, J. J.; Li, P.; Zhao, X. L.; Liu, Z. Y.; Fan, Q. H.; Li, Z.; Wang, D. Q. Nanoscale 2018, 3, 1383.

    31. [31]

      Park, C. M.; Chu, K. H.; Heo, J.; Her, N.; Jang, M.; Son, A.; Yoon, Y. J. Hazard. Mater. 2016, 309, 133.  doi: 10.1016/j.jhazmat.2016.02.006

    32. [32]

      Li, N.; Ma, J. Z.; Bao, Y. Chem. Res. 2009, 20, 98(in Chinese).
       

    33. [33]

      Huang, G. X.; Guo, H. Y.; Zhao, J.; Liu, Y. H.; Xing, B. S. Water Res. 2012, 102, 313.

    34. [34]

      Anirudhan, T. S.; Ramachandran, M. Proc. Saf. Environ. Prot. 2015, 95, 215.  doi: 10.1016/j.psep.2015.03.003

    35. [35]

      Chowdhury, I.; Duch, M. C.; Mansukhani, N. D.; Hersam, M. C.; Bouchard, D. Environ. Sci. Technol. 2013, 47, 6288.  doi: 10.1021/es400483k

    36. [36]

      Wu, L.; Liu, L.; Gao, B.; Muñoz-Carpena, R.; Zhang, M.; Chen, H.; Zhou, Z. H.; Wang, H. Langmuir 2013, 29, 15174.  doi: 10.1021/la404134x

    37. [37]

      Ma, J. C.; Dougherty, D. A. Chem. Rev. 1997, 97, 1303.  doi: 10.1021/cr9603744

    38. [38]

      Trivedi, P.; Axe, L.; Dyer, J. Colloids Surf. A 2001, 191, 107.  doi: 10.1016/S0927-7757(01)00768-3

    39. [39]

      Raza, G.; Amjad, M.; Kaur, I.; Wen, D. Environ. Sci. Technol. 2016, 50, 8462.  doi: 10.1021/acs.est.5b05746

    40. [40]

      Volkov, A. G.; Paula, D. W.; Dreamer, D. W. Bioelectrochem. Bioenerg. 1997, 42, 153.  doi: 10.1016/S0302-4598(96)05097-0

    41. [41]

      Tansel, B.; Sager, J.; Rector, T.; Garland, J.; Strayer, R. F.; Levine, L. F.; Roberts, M.; Hummerick, M.; Bauer, J. Sep. Purif. Technol. 2006, 51, 40.  doi: 10.1016/j.seppur.2005.12.020

    42. [42]

      Abdelmeguid, A. E.; Aboelfetoh, E. F.; Ebeid, E. M. Chemosphere 2017, 181, 738.  doi: 10.1016/j.chemosphere.2017.04.137

    43. [43]

      Tahir, S. S.; Rauf, N. Chemosphere 2006, 63, 1842.  doi: 10.1016/j.chemosphere.2005.10.033

    44. [44]

      Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.  doi: 10.1021/ja01539a017

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    14. [14]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    15. [15]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    19. [19]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    20. [20]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

Metrics
  • PDF Downloads(49)
  • Abstract views(1435)
  • HTML views(242)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return