Citation: Yu Jun, Yang Yusen, Wei Min. Preparation and Catalytic Performance of Supported Catalysts Derived from Layered Double Hydroxides[J]. Acta Chimica Sinica, ;2019, 77(11): 1129-1139. doi: 10.6023/A19070260 shu

Preparation and Catalytic Performance of Supported Catalysts Derived from Layered Double Hydroxides

  • Corresponding author: Yang Yusen, 2016400160@mail.buct.edu.cn Wei Min, weimin@mail.buct.edu.cn
  • Received Date: 11 July 2019
    Available Online: 4 November 2019

    Fund Project: the Fundamental Research Funds for the Central Universities XK1802-6the National Natural Science Foundation of China 21521005the National Key Research and Development Program 2017YFA0206804the National Natural Science Foundation of China 21871021Project supported by the National Natural Science Foundation of China (Nos. 21871021, 21521005), the National Key Research and Development Program (No. 2017YFA0206804), and the Fundamental Research Funds for the Central Universities (Nos. buctylkxj01, XK1802-6)the Fundamental Research Funds for the Central Universities buctylkxj01

Figures(10)

  • Supported catalysts have been widely used in a large variety of industrial processes, including ammonia synthesis, energy conversion and fine chemical synthesis. Layered double hydroxides (LDHs) are a class of two-dimensional functional anionic materials. By virtue of the unique structural characteristics (e.g., tunability of host layers, high dispersion of metal cations and structure topological transformation), LDHs have shown potential applications in heterogeneous catalysis as precursors or supports. In this review, high-performance monometallic or bimetallic supported catalysts by using LDHs as supports/precursors, or by utilizing mixed metal oxides (MMO) as supports via topotactic transformation from LDHs is highlighted. Their recent progresses in electrocatalysis, oxidative dehydrogenation, selective hydrogenation and syngas conversion reaction are reviewed. In the final section, future opportunities and challenges in the preparation of LDHs-based catalysts are discussed, and some strategies to resolve these critical problems are further proposed.
  • 加载中
    1. [1]

      White, R. J.; Rafael, L.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J. Chem. Soc. Rev. 2009, 38, 481.  doi: 10.1039/B802654H

    2. [2]

      Wang, Q.; O'Hare, D. Chem. Rev. 2012, 112, 4124.  doi: 10.1021/cr200434v

    3. [3]

      Yu, J.; Wang, Q.; O'Hare, D.; Sun, L. Chem. Soc. Rev. 2017, 46, 5950.  doi: 10.1039/C7CS00318H

    4. [4]

      Xu, M.; Wei, M. Adv. Funct. Mater. 2018, 28, 1802943.  doi: 10.1002/adfm.201802943

    5. [5]

      Jia, Y.; Wang, H.; Zhao, X.; Liu, X.; Wang, Y.; Fan, Q.; Zhou, J. Acta Chim. Sinica 2015, 73, 1207.  doi: 10.3866/PKU.WHXB201504142
       

    6. [6]

      Fan, G.; Li, F.; Evans, D. G.; Duan, X. Chem. Soc. Rev. 2014, 43, 7040.  doi: 10.1039/C4CS00160E

    7. [7]

      Li, T.; Zhao, J.; Li, Y.; Quan, Z.; Xu, J. Acta Chim. Sinica 2017, 75, 485.
       

    8. [8]

      Meng, X.; Yang, Y.; Chen, L.; Xu, M.; Zhang, X.; Wei, M. ACS Catal. 2019, 9, 4226.  doi: 10.1021/acscatal.9b00238

    9. [9]

      Gao, Z.; Liu, F. Q.; Wang, L.; Luo, F. Inorg. Chem. 2019, 58, 3247.  doi: 10.1021/acs.inorgchem.8b03327

    10. [10]

      Xia, C.; Gao, R.; Li, K.; Yang, Y.; Lin, Y.; Yan, D. Chin. J. Chem. 2017, 35, 1701.  doi: 10.1002/cjoc.201700136

    11. [11]

      Chen, H.; Huang, S.; Zhang, Z.; Liu, Y.; Wang, X. Acta Chim. Sinica 2017, 75, 560.  doi: 10.11862/CJIC.2017.075
       

    12. [12]

      Wang, N.; Pang, H.; Yu, S.; Gu, P.; Song, S.; Wang, H.; Wang, X. Acta Chim. Sinica 2019, 77, 143.
       

    13. [13]

      Bing, W.; Zheng, L.; He, S.; Rao, D.; Xu, M.; Zheng, L.; Wang, B.; Wang, Y.; Wei, M. ACS Catal. 2018, 8, 656.  doi: 10.1021/acscatal.7b03022

    14. [14]

      Yang, Y.; Chen, L.; Chen, Y.; Liu, W.; Feng, H.; Wang, B.; Zhang, X.; Wei, M. Green. Chem. 2019, DOI:10.1039/C9GC01119F.  doi: 10.1039/C9GC01119F

    15. [15]

      Zhou, J.; Yang, Y.; Li, C.; Zhang, S.; Chen, Y.; Shi, S.; Wei, M. J. Mater. Chem. A 2016, 4, 12825.  doi: 10.1039/C6TA04542A

    16. [16]

      Feng, J.; He, Y.; Liu, Y.; Du, Y.; Li, D. Chem. Soc. Rev. 2015, 44, 5291.  doi: 10.1039/C5CS00268K

    17. [17]

      Yan, K.; Liu, Y.; Lu, Y.; Chai, J.; Sun, L. Catal. Sci. Technol. 2017, 7, 1622.  doi: 10.1039/C7CY00274B

    18. [18]

      Li, X.; Jiang, P.; Lu, Y.; Zhang, W.; Dong, Y. Acta Chim. Sinica 2012, 70, 544.
       

    19. [19]

      Sun, K.; Gao, X.; Bai, Y.; Tan, M.; Yang, G.; Tan, Y. Catal. Sci. Technol. 2018, 8, 3936.  doi: 10.1039/C8CY01074A

    20. [20]

      Wang, L.; Yu, Q.; Feng, C.; Zhang, Y.; Hu, J. Chin. J. Org. Chem. 2019, 39, 1787.
       

    21. [21]

      Gao, X.; Zhou, Y.; Jing, F.; Luo, J.; Huang, Q.; Chu, W. Chin. J. Chem. 2017, 35, 1009.  doi: 10.1002/cjoc.201600865

    22. [22]

      Li, X.; Zhang, Q.; Wang, H.; Li, Y. Chin. J. Chem. 2017, 35, 196.  doi: 10.1002/cjoc.201600667

    23. [23]

      He, S.; Li, C.; Chen, H.; Su, D.; Zhang, B.; Cao, X.; Wang, B.; Wei, M.; Evans, D. G.; Duan, X. Chem. Mater. 2013, 25, 1040.  doi: 10.1021/cm303517z

    24. [24]

      Chen, H.; He, S.; Cao, X.; Zhang, S.; Xu, M.; Pu, M.; Su, D.; Wei, M.; Evans, D. G.; Duan, X. Chem. Mater. 2016, 28, 4751.  doi: 10.1021/acs.chemmater.6b01784

    25. [25]

      Gao, Z.; Liu, F.; Wang, L.; Luo, F. Appl. Surf. Sci. 2019, 480, 548.  doi: 10.1016/j.apsusc.2019.02.219

    26. [26]

      Wang, Y.; Chao, X.; Zhang, Z.; Liu, D.; Ru, C.; Wang, S. Adv. Funct. Mater. 2018, 28, 1703363.  doi: 10.1002/adfm.201703363

    27. [27]

      Zhao, Y.; Chen, G.; Bian, T.; Zhou, C.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; Smith, L. J.; O'Hare, D.; Zhang, T. Adv. Mater. 2016, 27, 7823.

    28. [28]

      Chen, Y.; Li, C.; Zhou, J.; Zhang, S.; Rao, D.; He, S.; Wei, M.; Evans, D. G.; Duan, X. ACS Catal. 2015, 5, 5756.  doi: 10.1021/acscatal.5b01429

    29. [29]

      Li, C.; Dou, Y.; Liu, J.; Chen, Y.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2013, 49, 9992.  doi: 10.1039/c3cc45697h

    30. [30]

      Zhang, S.; Fan, G.; Feng, L. Green Chem. 2013, 15, 2389.  doi: 10.1039/c3gc40658j

    31. [31]

      Zhou, L.; Shao, M.; Zhang, C.; Zhao, J.; He, S.; Rao, D.; Wei, M.; Evans, D. G.; Duan, X. Adv. Mater. 2017, 29, 1604080.  doi: 10.1002/adma.201604080

    32. [32]

      Zhang, F.; Zhao, X.; Feng, C.; Bo, L.; Tao, C.; Wei, L.; Lei, X.; Xu, S. ACS Catal. 2011, 1, 232.  doi: 10.1021/cs100089v

    33. [33]

      Liu, Y.; He, Y.; Zhou, D.; Feng, J.; Li, D. Catal. Sci. Technol. 2016, 6, 3027.  doi: 10.1039/C5CY01516B

    34. [34]

      Zhu, Y.; An, Z.; He, J. J. Catal. 2016, 341, 44.  doi: 10.1016/j.jcat.2016.06.004

    35. [35]

      Wang, Z.; Xu, S. M.; Xu, Y.; Tan, L.; Wang, X.; Zhao, Y.; Duan, H.; Song, Y. F. Chem. Sci. 2019, 10, 378.  doi: 10.1039/C8SC04480E

    36. [36]

      Li, C.; Wei, M.; Evans, D. G.; Duan, X. Small 2014, 10, 4469.  doi: 10.1002/smll.201401464

    37. [37]

      Xu, M.; He, S.; Chen, H.; Cui, G.; Zheng, L.; Wang, B.; Wei, M. ACS Catal. 2017, 7, 7600.  doi: 10.1021/acscatal.7b01951

    38. [38]

      Liu, N.; Xu, M.; Yang, Y.; Zhang, S.; Zhang, J.; Wang, W.; Zheng, L.; Hong, S.; Wei, M. ACS Catal. 2019, 9, 2707.  doi: 10.1021/acscatal.8b04913

    39. [39]

      Clarke, J. B.; Hastie, J. W.; Kihlborg, L. H. E.; Metselaar, R.; Thackeray, M. M. Pure Appl. Chem. 1994, 66, 577.  doi: 10.1351/pac199466030577

    40. [40]

      Valente, J. S.; Rodriguez-Gattorno, G.; Valle-Orta, M.; Torres-Garcia, E. Mater. Chem. Phys. 2012, 133, 621.  doi: 10.1016/j.matchemphys.2012.01.026

    41. [41]

      Ferreira, O. P.; Alves, O. L.; Gouveia, D. X.; Souza Filho, A. G.; de Paiva, J. A. C.; Filho, J. M. J. Solid. State. Chem. 2004, 177, 3058.  doi: 10.1016/j.jssc.2004.04.030

    42. [42]

      Zhao, X.; Zhang, F.; Xu, S.; Evans, D. G.; Duan, X. Chem. Mater. 2010, 22, 3933.  doi: 10.1021/cm100383d

    43. [43]

      He, S.; Zhang, S.; Lu, J.; Zhao, Y.; Ma, J.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2011, 47, 10797.  doi: 10.1039/c1cc14360c

    44. [44]

      Meng, Q.; Yan, H. Mol. Simul. 2017, 43, 1338.  doi: 10.1080/08927022.2017.1362107

    45. [45]

      Costa, D. G.; Rocha, A. B.; Souza, W. F.; Chiaro, S. S. X.; Leit o, A. A. J. Phys. Chem. C 2012, 116, 13679.  doi: 10.1021/jp303529y

    46. [46]

      Zhang, S. T.; Dou, Y.; Zhou, J.; Pu, M.; Yan, H.; Wei, M.; Evans, D. G.; Duan, X. ChemPhysChem 2016, 17, 2754.  doi: 10.1002/cphc.201600354

    47. [47]

      He, S.; An, Z.; Wei, M.; Evans, D. G.; Duan, X. Chem. Commun. 2013, 49, 5912.  doi: 10.1039/c3cc42137f

    48. [48]

      Yan, H.; Lu, J.; Wei, M.; Ma, J.; Li, H.; He, J.; Evans, D. G.; Duan, X. J. Mol. Struct.:Theochem. 2008, 866, 34.  doi: 10.1016/j.theochem.2008.06.031

    49. [49]

      He, Y.; Fan, J.; Feng, J.; Luo, C.; Yang, P.; Li, D. J. Catal. 2015, 331, 118.  doi: 10.1016/j.jcat.2015.08.012

    50. [50]

      Tongsakul, D.; Nishimura, S.; Ebitani, K. ACS Catal. 2013, 3, 2199.  doi: 10.1021/cs400458k

    51. [51]

      Francová, D.; Tanchoux, N.; Gérardin, C.; Trens, P.; Prinetto, F.; Ghiotti, G.; Tichit, D.; Coq, B. Microporous Mesoporous Mater. 2007, 99, 118.  doi: 10.1016/j.micromeso.2006.07.038

    52. [52]

      Wang, L.; Zhang, J.; Zhu, Y.; Xu, S.; Wang, C.; Bian, C.; Meng, X.; Xiao, F.-S. ACS Catal. 2017, 7, 7461.  doi: 10.1021/acscatal.7b01947

    53. [53]

      Sun, T.; Fan, G.; Li, F. Ind. Eng. Chem. Res. 2013, 52, 5538.  doi: 10.1021/ie3032795

    54. [54]

      Zhao, M. Q.; Zhang, Q.; Zhang, W.; Huang, J. Q.; Zhang, Y.; Su, D. S.; Wei, F. J. Am. Chem. Soc. 2010, 132, 14739.  doi: 10.1021/ja106421g

    55. [55]

      Gao, W.; Zhao, Y.; Chen, H.; Chen, H.; Li, Y.; He, S.; Zhang, Y.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2015, 17, 1525.  doi: 10.1039/C4GC01633E

    56. [56]

      Wu, J.; Gao, G.; Li, J.; Sun, P.; Long, X.; Li, F. Appl. Catal., B 2017, 203, 227.  doi: 10.1016/j.apcatb.2016.10.038

    57. [57]

      Dung, N. T.; Tichit, D.; Chiche, B. H.; Coq, B. Appl. Catal., A 1998, 169, 179.  doi: 10.1016/S0926-860X(98)00006-4

    58. [58]

      Koike, M.; Li, D.; Nakagawa, Y.; Tomishige, K. ChemSusChem 2012, 5, 2312.  doi: 10.1002/cssc.201200507

    59. [59]

      Li, C.; Chen, Y.; Zhang, S.; Zhou, J.; Wang, F.; He, S.; Wei, M.; Evans, D. G.; Duan, X. ChemCatChem 2014, 6, 824.  doi: 10.1002/cctc.201300813

    60. [60]

      Dresselhaus, M. S.; Thomas, I. L. Nature 2001, 414, 332.  doi: 10.1038/35104599

    61. [61]

      Jingshan, L.; Jeong-Hyeok, I.; Mayer, M. T.; Marcel, S.; Mohammad Khaja, N.; Nam-Gyu, P.; S David, T.; Jin, F. H.; Michael, G. T. Science 2014, 345, 1593.  doi: 10.1126/science.1258307

    62. [62]

      Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Nano Energy 2017, 40, 382.  doi: 10.1016/j.nanoen.2017.08.040

    63. [63]

      Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y.; Waterhouse, G. I. N.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. Adv. Energy Mater. 2017, 7, 1700467.  doi: 10.1002/aenm.201700467

    64. [64]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634.  doi: 10.1038/nchem.1095

    65. [65]

      Zhu, C.; Fu, S.; Shi, Q.; Du, D.; Lin, Y. Angew. Chem., Int. Ed. 2017, 56, 13944.  doi: 10.1002/anie.201703864

    66. [66]

      Li, P.; Wang, M.; Duan, X.; Zheng, L.; Cheng, X.; Zhang, Y.; Kuang, Y.; Li, Y.; Ma, Q.; Feng, Z.; Liu, W.; Sun, X. Nat. Commun. 2019, 10, 1711.  doi: 10.1038/s41467-019-09666-0

    67. [67]

      Zhang, J.; Liu, J.; Xi, L.; Yu, Y.; Chen, N.; Sun, S.; Wang, W.; Lange, K. M.; Zhang, B. J. Am. Chem. Soc. 2018, 140, 3876.  doi: 10.1021/jacs.8b00752

    68. [68]

      Zhao, Y.; Zhang, X.; Jia, X.; Waterhouse, G. I. N.; Shi, R.; Zhang, X.; Zhan, F.; Tao, Y.; Wu, L.-Z.; Tung, C.-H.; O'Hare, D.; Zhang, T. Adv. Energy Mater. 2018, 8, 1703585.  doi: 10.1002/aenm.201703585

    69. [69]

      Jia, X.; Zhang, X.; Zhao, J.; Zhao, Y.; Zhao, Y.; Waterhouse, G. I. N.; Shi, R.; Wu, L.-Z.; Tung, C.-H.; Zhang, T. J. Energy Chem. 2019, 34, 57.  doi: 10.1016/j.jechem.2018.09.011

    70. [70]

      Zhao, Y.; Jia, X.; Chen, G.; Shang, L.; Waterhouse, G. I.; Wu, L. Z.; Tung, C. H.; O'Hare, D.; Zhang, T. J. Am. Chem. Soc. 2016, 138, 6517.  doi: 10.1021/jacs.6b01606

    71. [71]

      He, L.; Huang, Y.; Wang, A.; Wang, X.; Chen, X.; Delgado, J. J.; Zhang, T. Angew. Chem., Int. Ed. 2012, 51, 6191.  doi: 10.1002/anie.201201737

    72. [72]

      Gao, W.; Li, C.; Chen, H.; Wu, M.; He, S.; Wei, M.; Evans, D. G.; Duan, X. Green Chem. 2014, 16, 1560.  doi: 10.1039/c3gc41939h

    73. [73]

      Zhao, J.; Shao, M.; Yan, D.; Zhang, S.; Lu, Z.; Li, Z.; Cao, X.; Wang, B.; Wei, M.; Evans, D. G.; Duan, X. J. Mater. Chem. A 2013, 1, 5840.  doi: 10.1039/c3ta10588a

    74. [74]

      Takato, M.; Yusuke, M.; Hisashi, F.; Tomoo, M.; Koichiro, J.; Kiyotomi, K. Angew. Chem., Int. Ed. 2008, 47, 138.  doi: 10.1002/anie.200703161

    75. [75]

      Mitran, G.; Cacciaguerra, T.; Loridant, S.; Tichit, D.; Marcu, I.-C. Appl. Catal., A 2012, 417~418, 153.

    76. [76]

      Wang, L.; Zhang, J.; Meng, X.; Zheng, D.; Xiao, F.-S. Catal. Today 2011, 175, 404.  doi: 10.1016/j.cattod.2011.03.040

    77. [77]

      He, Y.; Feng, J.; Brett, G. L.; Liu, Y.; Miedziak, P. J.; Edwards, J. K.; Knight, D. W.; Li, D.; Hutchings, G. J. ChemSusChem 2015, 8, 3314.  doi: 10.1002/cssc.201500503

    78. [78]

      Blanco, S.; Carrazán, S. R. G.; Rives, V. Appl. Catal., A 2008, 342, 93.  doi: 10.1016/j.apcata.2008.03.002

    79. [79]

      Pakhomov, N. A. Kinet. Catal. 2001, 42, 334.  doi: 10.1023/A:1010409230898

    80. [80]

      Sun, P.; Siddiqi, G.; Chi, M.; Bell, A. T. J. Catal. 2010, 274, 192.  doi: 10.1016/j.jcat.2010.06.017

    81. [81]

      Siddiqi, G.; Sun, P.; Galvita, V.; Bell, A. T. J. Catal. 2010, 274, 200.  doi: 10.1016/j.jcat.2010.06.016

    82. [82]

      Sun, P.; Siddiqi, G.; Vining, W. C.; Chi, M.; Bell, A. T. J. Catal. 2011, 282, 165.  doi: 10.1016/j.jcat.2011.06.008

    83. [83]

      Belskaya, O. B.; Stepanova, L. N.; Nizovskii, A. I.; Kalinkin, A. V.; Erenburg, S. B.; Trubina, S. V.; Kvashnina, K. O.; Leont'eva, N. N.; Gulyaeva, T. I.; Trenikhin, M. V.; Bukhtiyarov, V. I.; Likholobov, V. A. Catal. Today 2019, 329, 187.  doi: 10.1016/j.cattod.2018.11.081

    84. [84]

      Shimizu, K. I.; Kon, K.; Shimura, K.; Hakim, S. S. M. A. J. Catal. 2013, 300, 242.  doi: 10.1016/j.jcat.2013.01.005

    85. [85]

      Chen, H.; He, S.; Xu, M.; Wei, M.; Evans, D. G.; Duan, X. ACS Catal. 2017, 7, 2735.  doi: 10.1021/acscatal.6b03494

    86. [86]

      Mckenna, F. M.; Mantarosie, L.; Wells, R. P. K.; Hardacre, C.; Anderson, J. A. Catal. Sci. Technol. 2012, 2, 632.  doi: 10.1039/c2cy00479h

    87. [87]

      Kahsar, K. R.; Schwartz, D. K.; Will, J. M. J. Am. Chem. Soc. 2014, 136, 520.  doi: 10.1021/ja411973p

    88. [88]

      He, Y.; Liang, L.; Liu, Y.; Feng, J.; Ma, C.; Li, D. J. Catal. 2014, 309, 166.  doi: 10.1016/j.jcat.2013.09.017

    89. [89]

      Liu, Y. N.; Feng, J. T.; He, Y. F.; Sun, J. H.; Li, D. Q. Catal. Sci. Technol. 2015, 5, 1231.  doi: 10.1039/C4CY01160K

    90. [90]

      Liu, Y.; Zhao, J.; He, Y.; Feng, J.; Wu, T.; Li, D. J. Catal. 2017, 348, 135.  doi: 10.1016/j.jcat.2017.02.020

    91. [91]

      Stassi, J. P.; Zgolicz, P. D.; Miguel, S. R. D.; Scelza, O. A. J. Catal. 2013, 306, 11.  doi: 10.1016/j.jcat.2013.05.029

    92. [92]

      Ide, M. S.; Bing, H.; Neurock, M.; Davis, R. J. ACS Catal. 2012, 2, 671.  doi: 10.1021/cs200567z

    93. [93]

      Li, C.; Chen, Y.; Zhang, S.; Xu, S.; Zhou, J.; Wang, F.; Wei, M.; Evans, D. G.; Duan, X. Chem. Mater. 2013, 25, 3888.  doi: 10.1021/cm4021832

    94. [94]

      Yang, Y.; Rao, D.; Chen, Y.; Dong, S.; Wang, B.; Zhang, X.; Wei, M. ACS Catal. 2018, 8, 11749.  doi: 10.1021/acscatal.8b02755

    95. [95]

      Kong, X.; Zheng, R.; Zhu, Y.; Ding, G.; Zhu, Y.; Li, Y.-W. Green Chem. 2015, 17, 2504.  doi: 10.1039/C5GC00062A

    96. [96]

      Yan, K.; Chen, A. Energy 2013, 58, 357.  doi: 10.1016/j.energy.2013.05.035

    97. [97]

      Gupta, M.; Smith, M. L.; Spivey, J. J. ACS Catal. 2011, 1, 641.  doi: 10.1021/cs2001048

    98. [98]

      Spivey, J. J.; Egbebi, A. Chem. Soc. Rev. 2007, 36, 1514.  doi: 10.1039/b414039g

    99. [99]

      Gao, W.; Zhao, Y.; Liu, J.; Huang, Q.; He, S.; Li, C.; Zhao, J.; Wei, M. Catal. Sci. Technol. 2013, 3, 1324.  doi: 10.1039/c3cy00025g

    100. [100]

      Cao, A.; Liu, G.; Yue, Y.; Zhang, L.; Liu, Y. RSC Adv. 2015, 5, 58804.  doi: 10.1039/C5RA05190H

    101. [101]

      Wang, L.; Cao, A.; Liu, G.; Zhang, L.; Liu, Y. Appl. Surf. Sci. 2016, 360, 77.  doi: 10.1016/j.apsusc.2015.10.234

    102. [102]

      Cao, A.; Liu, G.; Wang, L.; Liu, J.; Yue, Y.; Zhang, L.; Liu, Y. J. Mater. Sci. 2016, 51, 5216.  doi: 10.1007/s10853-016-9823-9

    103. [103]

      Han, X.; Fang, K.; Zhou, J.; Zhao, L.; Sun, Y. J. Colloid. Interface Sci. 2016, 470, 162.  doi: 10.1016/j.jcis.2015.09.062

    104. [104]

      Ning, X.; An, Z.; He, J. J. Catal. 2016, 340, 236.  doi: 10.1016/j.jcat.2016.05.014

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    6. [6]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    12. [12]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    15. [15]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    16. [16]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    19. [19]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(78)
  • Abstract views(2394)
  • HTML views(647)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return