Citation: Cheng Zhongming, Chen Pinhong, Liu Guosheng. Enantioselective Cyanation of Remote C-H Bonds via Cooperative Photoredox and Copper Catalysis[J]. Acta Chimica Sinica, ;2019, 77(9): 856-860. doi: 10.6023/A19070252 shu

Enantioselective Cyanation of Remote C-H Bonds via Cooperative Photoredox and Copper Catalysis

  • Corresponding author: Liu Guosheng, gliu@mail.sioc.ac.cn
  • Received Date: 4 July 2019
    Available Online: 15 September 2019

    Fund Project: the National Natural Science Foundation of China 21790330the Science and Technology Commission of Shanghai Municipality 17QA1405200the Science and Technology Commission of Shanghai Municipality 17XD1404500the Science and Technology Commission of Shanghai Municipality 17JC1401200the National Natural Science Foundation of China 21532009the National Basic Research Program of China 973-2015CB856600the National Natural Science Foundation of China 21821002Project supported by the National Basic Research Program of China (No. 973-2015CB856600), the National Natural Science Foundation of China (Nos. 21532009, 21790330 and 21821002), the Science and Technology Commission of Shanghai Municipality (Nos. 17XD1404500, 17QA1405200 and 17JC1401200), and the Key Research Program of Frontier Science (No. QYZDJSSWSLH055) of the Chinese Academy of Sciencesthe Key Research Program of Frontier Science QYZDJSSWSLH055

Figures(2)

  • Optically pure alkylnitriles are important structural motifs found in agrochemicals, pharmaceuticals, and natural products, which can be further transferred to acids, amines and amides. Direct asymmetric cyanation of sp3 C-H bonds represents the most efficient synthetic pathway to these optically pure alkylnitriles. However, selective functionalization of sp3 C-H bonds remains a crucial issue due to the inertness of sp3 C-H bonds as well as the difficulties in the control of stereo-and regioselectivity. Inspired by enzymatic oxygenases and halogenases, such as cytochrome P450 and nonheme iron enzymes, the radical-based C-H functionalization has received much attention, which was initiated with a hydrogen atom transfer (HAT) process. Recently, numerous reports have been disclosed for the highly efficient functionalization of C-H bonds with an intramolecular HAT process as a key step to govern the reactivity and site selectivity. Our group has developed a copper-catalyzed radical relay process for the enantioselective cyanation and arylation of benzylic C-H bonds using TMSCN and ArB(OH)2 as nucleophiles respectively. Mechanistic studies indicated that a benzylic radical generated via a radical replay process can be trapped by a reactive chiral copper(Ⅱ) cyanide enantioselectively, delivering optically pure benzyl nitriles efficiently. Herein, we communicate the catalytic asymmetric cyanation of remote C-H bonds by merging photoredox catalysis with copper catalysis. This reaction proceeds under mild reaction conditions and exhibits good functional group compatibility as well as wide substrates scope. Additionally, the nitrile group was further reduced to amide under hydrogen atmosphere. This reaction provides an efficient pathway to synthesize chiral δ-cyano alcohols and 1, 6-amino alcohols. The general procedure is as following:in a dried sealed tube, substrate 1 (0.2 mmol, 1.0 equiv.), Cu(CH3CN)4PF6 (0.01 mmol, 5 mol%), L (0.015 mmol, 7.5 mol%) and Ir(ppy)3 (0.002 mmol, 1 mol%) were dissolved in dichloromethane (4.0 mL) under N2 atmosphere, and stirred for 30 min. Then, TMSCN (50 μL, 0.4 mmol, 2 equiv.) was added slowly under N2 atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred under the irradiation of blue LED for 1~7 d. The reaction mixture was diluted with dichloromethane, filtered through a short pad of celite. A solution of TBAF (3 equiv.) and HOAc (3 equiv.) was added to the filtration. The mixture was stirred for 5 min and then washed with water (3×10 mL) and dried over anhydrous Na2SO4. After filtration and concentration, the residue was purified by silica gel chromatography (eluent:petroleum ether/ethyl acetate) to afford target product.
  • 加载中
    1. [1]

    2. [2]

      (a) Rappoport, Z. The Chemistry of the Cyano Group, Interscience Publishers, London, 1970. (b) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparation, 2nd ed., Wiley-VCH, Weinheim, 1999, p. 821.

    3. [3]

      Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2016, 45, 546.  doi: 10.1039/C5CS00628G

    4. [4]

      (a) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947. (b) Ortiz de Montellano, P. R. Chem. Rev. 2010, 110, 932.

    5. [5]

    6. [6]

      For some reviews, see:Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.  doi: 10.1055/s-0036-1591930

    7. [7]

      (a) Martínez, C.; Muñiz, K. Angew. Chem., Int. Ed. 2015, 54, 8287. (b) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268. (c) Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272. (d) Chen, D.; Chu, J. C. K.; Rovis, T. J. Am. Chem. Soc. 2017, 139, 14897. (e) Wappes, E. A.; Fosu, S. C.; Chopko, T. C.; Nagib, D. A. Angew. Chem., Int. Ed. 2016, 55, 9974. (f) Liu, T.; Myers, M. C.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 306. (g) Becker, P.; Duhamel, T.; Stein, C. J.; Reiher, M.; Muñiz, K. Angew. Chem., Int. Ed. 2017, 56, 8004. (h) Li, Z.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2018, 57, 13288. (i) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692. (j) Xia, Y.; Wang, L.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 12940. (k) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744. (l) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 12945. (m) Li, C.; Lang, K.; Lu, H.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2018, 57, 16837. (n) Chen, H.; Guo, L.; Yu, S. Org. Lett. 2018, 20, 6255. (o) Stateman, L. M.; Wappes, E. A.; Nakafuku, K. M.; Edwards, K. M.; Nagib, D. A. Chem. Sci. 2019, 10, 2693. (p) Zhang, Z.; Stateman, L. M.; Nagib, D. A. Chem. Sci. 2019, 10, 1207. (q) Wu, K.; Wang, L.; Colón-Rodríguez, S.; Flechsig, G.-U.; Wang, T. Angew. Chem., Int. Ed. 2019, 58, 1774. (r) Bao, X.; Wang, Q.; Zhu, J. Nature Commun. 2019, 10, 768. (s) Lang, K.; Torker, S.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2019, DOI: 10.1021/jacs.9b05850.

    8. [8]

      (a) Peng, Y.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890. (b) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem., Int. Ed. 2016, 55, 1872. (c) Wang, C. Y.; Harms, K.; Meggers, E. Angew. Chem., Int. Ed. 2016, 55, 13495. (d) Hu, A.; Guo, J.-J.; Pan, H.; Tang, H.; Gao, Z.; Zuo, Z. J. Am. Chem. Soc. 2018, 140, 1612. (e) Zhu, Y.; Huang, K.; Pan, J.; Qiu, X.; Luo, X.; Qin, Q.; Wei, J.; Wen, X.; Zhang, L.; Jiao, N. Nat. Commun. 2018, 9, 2625. (f) Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343. (g) Wu, X.; Wang, M.; Huan, L.; Wang, Wang, D. J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640. (h) Wang, M.; Huang, L.; Zhu, C. Org. Lett. 2019, 21, 821. (i) Kim, I.; Park, B.; Kang, G.; Kim, J.; Jung, H.; Lee, H.; Baik, M.; Hong, S. Angew. Chem., Int. Ed. 2018, 57, 15517. (j) Guan, H.; Sun, S.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.; Liu, L. Angew. Chem. Int. Ed. 2018, 57, 11413. (k) Bao, X.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2019, 58, 2139.

    9. [9]

      (a) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041. (b) Cui, X.; Xu, X.; Jin, L.-M.; Wojtasa, L.; Zhang, X. P. Chem. Sci. 2015, 6, 1219. (c) Chen, J.-Q.; Wei, Y.-L.; Xu, G.-Q.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2016, 52, 6455. (d) Li, T.; Yu, P.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y. Chin. J. Chem. 2016, 34, 490. (e) Li, L.; Ye, L.; Ni, S.-F.; Li, Z.-L.; Chen, S.; Du, Y.-M.; Li, X.-H.; Dang, L.; Liu, X.-Y. Org. Chem. Front. 2017, 4, 2139. (f) Yuan, W.; Zhou. Z.; Gong, L.; Meggers, E. Chem. Commun. 2017, 53, 8964. (g) Li, T.; Yu, P.; Du, Y.-M.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y. J. Fluorine Chem. 2017, 203, 210. (h) Wang, N.; Ye, L.; Li, Z.-L.; Li, L.; Li, Z.; Zhang, H.-X.; Guo, Z.; Gu, Q.-S.; Liu, X.-Y. Org. Chem. Front. 2018, 5, 2810. (i) Chen, J.-Q.; Chang, R.; Lin, J.-B.; Luo, Y.-C.; Xu, P.-F. Org. Lett. 2018, 20, 2395. (j) Wang, Y.; Wen, X.; Cui, X.; Zhang, X. P. J. Am. Chem. Soc. 2018, 140, 4792. (k) Wen, X.; Wang, Y.; Zhang, X. P. Chem. Sci. 2018, 9, 5082. (l) Wu, S.; Wu, X.; Wang, D.; Zhu, C. Angew. Chem., Int. Ed. 2019, 58, 1499. (m) Chuentragool, P.; Yadagiri, D.; Morita, T.; Sarkar, S.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem. Int. Ed. 2019, 58, 1794.

    10. [10]

      Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.  doi: 10.1021/acs.accounts.8b00265

    11. [11]

      (a) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014. (b) Zhang, W.; Wu, L.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2019, 58, 6425. (c) Zhang, W.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 7709.

    12. [12]

      For cyanations, see: (a) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547. (b) Wang, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 2054. (c) Lu, F.-D.; Liu, D.; Zhu, L.; Lu, L.-Q.; Yang, Q.; Zhou, Q.-Q.; Wei, Y.; Lan, Y.; Xiao, W.-J. J. Am. Chem. Soc. 2019, 141, 6167. For arylations, see: (d) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904. (e) Wang, D.; Wu, L.; Wang, F.; Wan, X.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 6811. For alkynylation, see: (f) Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, P. J. Am. Chem. Soc. 2018, 140, 10965.

    13. [13]

      Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 15632.  doi: 10.1021/jacs.7b09802

    14. [14]

      (a) Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W. J. Am. Chem. Soc. 1988, 110, 5900. (b) Kim, S.; Lee, T. A.; Song, Y. Synlett 1998, 471. (c) Zlotorzynska, M.; Sammis, G. M. Org. Lett. 2011, 13, 6264.

  • 加载中
    1. [1]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    9. [9]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    11. [11]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    12. [12]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    13. [13]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

Metrics
  • PDF Downloads(119)
  • Abstract views(1998)
  • HTML views(407)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return