Citation: Cheng Zhongming, Chen Pinhong, Liu Guosheng. Enantioselective Cyanation of Remote C-H Bonds via Cooperative Photoredox and Copper Catalysis[J]. Acta Chimica Sinica, ;2019, 77(9): 856-860. doi: 10.6023/A19070252 shu

Enantioselective Cyanation of Remote C-H Bonds via Cooperative Photoredox and Copper Catalysis

  • Corresponding author: Liu Guosheng, gliu@mail.sioc.ac.cn
  • Received Date: 4 July 2019
    Available Online: 15 September 2019

    Fund Project: the National Natural Science Foundation of China 21790330the Science and Technology Commission of Shanghai Municipality 17QA1405200the Science and Technology Commission of Shanghai Municipality 17XD1404500the Science and Technology Commission of Shanghai Municipality 17JC1401200the National Natural Science Foundation of China 21532009the National Basic Research Program of China 973-2015CB856600the National Natural Science Foundation of China 21821002Project supported by the National Basic Research Program of China (No. 973-2015CB856600), the National Natural Science Foundation of China (Nos. 21532009, 21790330 and 21821002), the Science and Technology Commission of Shanghai Municipality (Nos. 17XD1404500, 17QA1405200 and 17JC1401200), and the Key Research Program of Frontier Science (No. QYZDJSSWSLH055) of the Chinese Academy of Sciencesthe Key Research Program of Frontier Science QYZDJSSWSLH055

Figures(2)

  • Optically pure alkylnitriles are important structural motifs found in agrochemicals, pharmaceuticals, and natural products, which can be further transferred to acids, amines and amides. Direct asymmetric cyanation of sp3 C-H bonds represents the most efficient synthetic pathway to these optically pure alkylnitriles. However, selective functionalization of sp3 C-H bonds remains a crucial issue due to the inertness of sp3 C-H bonds as well as the difficulties in the control of stereo-and regioselectivity. Inspired by enzymatic oxygenases and halogenases, such as cytochrome P450 and nonheme iron enzymes, the radical-based C-H functionalization has received much attention, which was initiated with a hydrogen atom transfer (HAT) process. Recently, numerous reports have been disclosed for the highly efficient functionalization of C-H bonds with an intramolecular HAT process as a key step to govern the reactivity and site selectivity. Our group has developed a copper-catalyzed radical relay process for the enantioselective cyanation and arylation of benzylic C-H bonds using TMSCN and ArB(OH)2 as nucleophiles respectively. Mechanistic studies indicated that a benzylic radical generated via a radical replay process can be trapped by a reactive chiral copper(Ⅱ) cyanide enantioselectively, delivering optically pure benzyl nitriles efficiently. Herein, we communicate the catalytic asymmetric cyanation of remote C-H bonds by merging photoredox catalysis with copper catalysis. This reaction proceeds under mild reaction conditions and exhibits good functional group compatibility as well as wide substrates scope. Additionally, the nitrile group was further reduced to amide under hydrogen atmosphere. This reaction provides an efficient pathway to synthesize chiral δ-cyano alcohols and 1, 6-amino alcohols. The general procedure is as following:in a dried sealed tube, substrate 1 (0.2 mmol, 1.0 equiv.), Cu(CH3CN)4PF6 (0.01 mmol, 5 mol%), L (0.015 mmol, 7.5 mol%) and Ir(ppy)3 (0.002 mmol, 1 mol%) were dissolved in dichloromethane (4.0 mL) under N2 atmosphere, and stirred for 30 min. Then, TMSCN (50 μL, 0.4 mmol, 2 equiv.) was added slowly under N2 atmosphere. The tube was sealed with a Teflon-lined cap, and the mixture was stirred under the irradiation of blue LED for 1~7 d. The reaction mixture was diluted with dichloromethane, filtered through a short pad of celite. A solution of TBAF (3 equiv.) and HOAc (3 equiv.) was added to the filtration. The mixture was stirred for 5 min and then washed with water (3×10 mL) and dried over anhydrous Na2SO4. After filtration and concentration, the residue was purified by silica gel chromatography (eluent:petroleum ether/ethyl acetate) to afford target product.
  • 加载中
    1. [1]

    2. [2]

      (a) Rappoport, Z. The Chemistry of the Cyano Group, Interscience Publishers, London, 1970. (b) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparation, 2nd ed., Wiley-VCH, Weinheim, 1999, p. 821.

    3. [3]

      Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2016, 45, 546.  doi: 10.1039/C5CS00628G

    4. [4]

      (a) Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947. (b) Ortiz de Montellano, P. R. Chem. Rev. 2010, 110, 932.

    5. [5]

    6. [6]

      For some reviews, see:Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.  doi: 10.1055/s-0036-1591930

    7. [7]

      (a) Martínez, C.; Muñiz, K. Angew. Chem., Int. Ed. 2015, 54, 8287. (b) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Nature 2016, 539, 268. (c) Chu, J. C. K.; Rovis, T. Nature 2016, 539, 272. (d) Chen, D.; Chu, J. C. K.; Rovis, T. J. Am. Chem. Soc. 2017, 139, 14897. (e) Wappes, E. A.; Fosu, S. C.; Chopko, T. C.; Nagib, D. A. Angew. Chem., Int. Ed. 2016, 55, 9974. (f) Liu, T.; Myers, M. C.; Yu, J.-Q. Angew. Chem., Int. Ed. 2017, 56, 306. (g) Becker, P.; Duhamel, T.; Stein, C. J.; Reiher, M.; Muñiz, K. Angew. Chem., Int. Ed. 2017, 56, 8004. (h) Li, Z.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2018, 57, 13288. (i) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692. (j) Xia, Y.; Wang, L.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 12940. (k) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744. (l) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 12945. (m) Li, C.; Lang, K.; Lu, H.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X. P. Angew. Chem., Int. Ed. 2018, 57, 16837. (n) Chen, H.; Guo, L.; Yu, S. Org. Lett. 2018, 20, 6255. (o) Stateman, L. M.; Wappes, E. A.; Nakafuku, K. M.; Edwards, K. M.; Nagib, D. A. Chem. Sci. 2019, 10, 2693. (p) Zhang, Z.; Stateman, L. M.; Nagib, D. A. Chem. Sci. 2019, 10, 1207. (q) Wu, K.; Wang, L.; Colón-Rodríguez, S.; Flechsig, G.-U.; Wang, T. Angew. Chem., Int. Ed. 2019, 58, 1774. (r) Bao, X.; Wang, Q.; Zhu, J. Nature Commun. 2019, 10, 768. (s) Lang, K.; Torker, S.; Wojtas, L.; Zhang, X. P. J. Am. Chem. Soc. 2019, DOI: 10.1021/jacs.9b05850.

    8. [8]

      (a) Peng, Y.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890. (b) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Angew. Chem., Int. Ed. 2016, 55, 1872. (c) Wang, C. Y.; Harms, K.; Meggers, E. Angew. Chem., Int. Ed. 2016, 55, 13495. (d) Hu, A.; Guo, J.-J.; Pan, H.; Tang, H.; Gao, Z.; Zuo, Z. J. Am. Chem. Soc. 2018, 140, 1612. (e) Zhu, Y.; Huang, K.; Pan, J.; Qiu, X.; Luo, X.; Qin, Q.; Wei, J.; Wen, X.; Zhang, L.; Jiao, N. Nat. Commun. 2018, 9, 2625. (f) Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C. Nat. Commun. 2018, 9, 3343. (g) Wu, X.; Wang, M.; Huan, L.; Wang, Wang, D. J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640. (h) Wang, M.; Huang, L.; Zhu, C. Org. Lett. 2019, 21, 821. (i) Kim, I.; Park, B.; Kang, G.; Kim, J.; Jung, H.; Lee, H.; Baik, M.; Hong, S. Angew. Chem., Int. Ed. 2018, 57, 15517. (j) Guan, H.; Sun, S.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.; Liu, L. Angew. Chem. Int. Ed. 2018, 57, 11413. (k) Bao, X.; Wang, Q.; Zhu, J. Angew. Chem. Int. Ed. 2019, 58, 2139.

    9. [9]

      (a) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2015, 54, 4041. (b) Cui, X.; Xu, X.; Jin, L.-M.; Wojtasa, L.; Zhang, X. P. Chem. Sci. 2015, 6, 1219. (c) Chen, J.-Q.; Wei, Y.-L.; Xu, G.-Q.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2016, 52, 6455. (d) Li, T.; Yu, P.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y. Chin. J. Chem. 2016, 34, 490. (e) Li, L.; Ye, L.; Ni, S.-F.; Li, Z.-L.; Chen, S.; Du, Y.-M.; Li, X.-H.; Dang, L.; Liu, X.-Y. Org. Chem. Front. 2017, 4, 2139. (f) Yuan, W.; Zhou. Z.; Gong, L.; Meggers, E. Chem. Commun. 2017, 53, 8964. (g) Li, T.; Yu, P.; Du, Y.-M.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y. J. Fluorine Chem. 2017, 203, 210. (h) Wang, N.; Ye, L.; Li, Z.-L.; Li, L.; Li, Z.; Zhang, H.-X.; Guo, Z.; Gu, Q.-S.; Liu, X.-Y. Org. Chem. Front. 2018, 5, 2810. (i) Chen, J.-Q.; Chang, R.; Lin, J.-B.; Luo, Y.-C.; Xu, P.-F. Org. Lett. 2018, 20, 2395. (j) Wang, Y.; Wen, X.; Cui, X.; Zhang, X. P. J. Am. Chem. Soc. 2018, 140, 4792. (k) Wen, X.; Wang, Y.; Zhang, X. P. Chem. Sci. 2018, 9, 5082. (l) Wu, S.; Wu, X.; Wang, D.; Zhu, C. Angew. Chem., Int. Ed. 2019, 58, 1499. (m) Chuentragool, P.; Yadagiri, D.; Morita, T.; Sarkar, S.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem. Int. Ed. 2019, 58, 1794.

    10. [10]

      Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036.  doi: 10.1021/acs.accounts.8b00265

    11. [11]

      (a) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G. Science 2016, 353, 1014. (b) Zhang, W.; Wu, L.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2019, 58, 6425. (c) Zhang, W.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 7709.

    12. [12]

      For cyanations, see: (a) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547. (b) Wang, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 2054. (c) Lu, F.-D.; Liu, D.; Zhu, L.; Lu, L.-Q.; Yang, Q.; Zhou, Q.-Q.; Wei, Y.; Lan, Y.; Xiao, W.-J. J. Am. Chem. Soc. 2019, 141, 6167. For arylations, see: (d) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 2904. (e) Wang, D.; Wu, L.; Wang, F.; Wan, X.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 6811. For alkynylation, see: (f) Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, P. J. Am. Chem. Soc. 2018, 140, 10965.

    13. [13]

      Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G. J. Am. Chem. Soc. 2017, 139, 15632.  doi: 10.1021/jacs.7b09802

    14. [14]

      (a) Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W. J. Am. Chem. Soc. 1988, 110, 5900. (b) Kim, S.; Lee, T. A.; Song, Y. Synlett 1998, 471. (c) Zlotorzynska, M.; Sammis, G. M. Org. Lett. 2011, 13, 6264.

  • 加载中
    1. [1]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    8. [8]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    17. [17]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    20. [20]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

Metrics
  • PDF Downloads(118)
  • Abstract views(1971)
  • HTML views(405)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return