Citation: Liang Shan, Zong Minhua, Lou Wenyong. Recent Advances in Enzymatic Catalysis for Preparation of High Value-Added Chemicals from Carbon Dioxide[J]. Acta Chimica Sinica, ;2019, 77(11): 1099-1114. doi: 10.6023/A19060240 shu

Recent Advances in Enzymatic Catalysis for Preparation of High Value-Added Chemicals from Carbon Dioxide

  • Corresponding author: Lou Wenyong, wylou@scut.edu.cn
  • Received Date: 1 July 2019
    Available Online: 22 November 2019

Figures(10)

  • With the rapid development of modern industry, coal, petroleum, natural gas and other fossil fuels have been excessively consumed, along with an increasing large quantities of greenhouse gases (e.g. carbon dioxide, CO2) are produced. It is urgent to develop sustainable green energy and abate the detriment of carbon dioxide on global environment. CO2 is a cheap carbon source that can be converted into high value-added chemicals by chemical, photochemical, electrochemical or enzymatic methods to realize the recycling of CO2. It is a win-win strategy to solve the energy and environmental crisis caused by global carbon emissions. Inspired by natural CO2 metabolic process, enzymatic transformation provides an alternative strategy for efficient recycling of CO2. Compared with traditional chemical, photochemical or electrochemical methods, the enzymatic route holds advantages of green, high efficiency, mild and excellent selectivity, which is expected to bring new revolutionary opportunities for efficient utilization of CO2. Thus, in this present review, we firstly introduce the brief background about enzymatic conversion for CO2 capture, sequestration and utilization. Next, we depict six major routes of the CO2 metabolic process in cells, which are taken as the inspiration source for the construction of enzymatic systems in vitro. Subsequently, recent advances in enzymatic conversion of CO2 that catalyzed by various single enzymes and multi-enzyme cascade systems are systematically reviewed. Some emerging approaches for construction of immobilized single-or multi-enzyme systems, directed evolution and artificial modification of enzymes, and cofactor regulation during the enzymatic processes are also discussed. Finally, the defects and shortcomings of enzymatic approaches are summarized, and the future perspectives are finally put forward. Based on this present review, we aim to provide theoretical reference and practical basis for more efficient enzymatic utilization of CO2 to produce high value-added chemicals.
  • 加载中
    1. [1]

      Air Products and Chemicals, Inc., Carbon Dioxide Product Stewardship Summary, www.airproducts.com, 2018.

    2. [2]

      Lei, Z.; Xue, Y.; Chen, W.; Qiu, W.; Zhang, Y.; Horike, S.; Tang, L. Adv. Energy Mater. 2018, 8, 1801587.  doi: 10.1002/aenm.201801587

    3. [3]

      Zhang, Z.; Muschiol, J.; Huang, Y.; Sigurdardóttir, S. B.; von Solms, N.; Daugaard, A. E.; Wei, J.; Luo, J.; Xu, B.-H.; Zhang, S.; Pinelo, M. Green Chem. 2018, 20, 4339.  doi: 10.1039/C8GC02230E

    4. [4]

      Sultana, S.; Chandra Sahoo, P.; Martha, S.; Parida, K. RSC Adv. 2016, 6, 44170.  doi: 10.1039/C6RA05472B

    5. [5]

      Chang, S.-L.; Liang, F.; Yao, Y.-C.; Ma, W.-H.; Yang, B.; Dai, Y.-N. Acta Chim. Sinica 2018, 76, 515.  doi: 10.11862/CJIC.2018.038
       

    6. [6]

      Olivier, J. G. J.; Peters, J. A. H. W. Trends in global CO2 and total greenhouse gas emissions:2018 Report, PBL Netherlands Environmental Assessment Agency, The Hague, 2018, 3125, pp. 4~6.

    7. [7]

      Shi, J.; Jiang, Y.; Jiang, Z.; Wang, X.; Wang, X.; Zhang, S.; Han, P.; Yang, C. Chem. Soc. Rev. 2015, 44, 5981.  doi: 10.1039/C5CS00182J

    8. [8]

      Zhang, S.; Li, X.-D.; He, L.-N. Acta Chim. Sinica 2016, 74, 17.
       

    9. [9]

      Long, N.; Lee, J.; Koo, K.-K.; Luis, P.; Lee, M. Energies 2017, 10, 473.  doi: 10.3390/en10040473

    10. [10]

      Chang, X.; Wang, T.; Yang, P.; Zhang, G.; Gong, J. Adv. Mater. 2018, 31, 1804710.

    11. [11]

      Chen, Z.; Wang, X.; Liu, L. Chem. Rec. 2019, 19, 1272.  doi: 10.1002/tcr.201800100

    12. [12]

      Kuramochi, Y.; Ishitani, O.; Ishida, H. Coord. Chem. Rev. 2018, 373, 333.  doi: 10.1016/j.ccr.2017.11.023

    13. [13]

      Aresta, M.; Dibenedetto, A.; Quaranta, E. In Reaction Mechanisms in Carbon Dioxide Conversion, Vol. 9, Eds.: Aresta, M.; Dibenedetto, A.; Quaranta, E., Springer Berlin Heidelberg, Berlin, Heidelberg, 2016, pp. 347~371.

    14. [14]

      Mondal, B.; Song, J.; Neese, F.; Ye, S. Curr. Opin. Chem. Biol. 2015, 25, 103.  doi: 10.1016/j.cbpa.2014.12.022

    15. [15]

      Aresta, M.; Quaranta, E.; Liberio, R.; Dileo, C.; Tommasi, I. Tetrahedron 1998, 54, 8841.  doi: 10.1016/S0040-4020(98)00475-X

    16. [16]

      Obert, R.; Dave, B. C. J. Am. Chem. Soc. 1999, 121, 12192.  doi: 10.1021/ja991899r

    17. [17]

      Marpani, F.; Pinelo, M.; Meyer, A. S. Biochem. Eng. J. 2017, 127, 217.  doi: 10.1016/j.bej.2017.08.011

    18. [18]

      Fuchs, G. Annu. Rev. Microbiol. 2011, 65, 631.  doi: 10.1146/annurev-micro-090110-102801

    19. [19]

      Berg, I. A.; Kockelkorn, D.; Ramos-Vera, W. H.; Say, R.; Zarzycki, J.; Fuchs, G. In Carbon Dioxide as Chemical Feedstock, Vol. 3, Ed.: Aresta, M., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010, pp. 33~53.

    20. [20]

      Alissandratos, A.; Easton, C. J. Beilstein J. Org. Chem. 2015, 11, 2370.  doi: 10.3762/bjoc.11.259

    21. [21]

      Erb, T. J. Appl. Environ. Microbiol. 2011, 77, 8466.  doi: 10.1128/AEM.05702-11

    22. [22]

      Tabita, F. R.; Hanson, T. E.; Li, H.; Satagopan, S.; Singh, J.; Chan, S. Microbiol. Mol. Biol. Rev. 2007, 71, 576.  doi: 10.1128/MMBR.00015-07

    23. [23]

      Ljungdahl, L. G.; Wood, H. G. Annu. Rev. Microbiol. 1969, 23, 515.  doi: 10.1146/annurev.mi.23.100169.002503

    24. [24]

      Ragsdale, S. W.; Kumar, M.; Seravalli, J.; Qiu, D.; Spiro, T. D. In Microbial Growth on C1 Compounds, Eds.: Lidstrom, M. E.; Tabita, F. R., Springer, Dordrecht, 1996, pp. 191~196.

    25. [25]

      Ragsdale, S. W.; Pierce, E. Biochim. Biophys. Acta 2008, 1784, 1873.  doi: 10.1016/j.bbapap.2008.08.012

    26. [26]

      Gencic, S.; Duin, E. C.; Grahame, D. A. J. Biol. Chem. 2010, 285, 15450.  doi: 10.1074/jbc.M109.080994

    27. [27]

      Wang, H.-J.; Ni, J.; Zhang, Y.; Zhang, L.; Xin, Y.-Y. Microbiol. China 2013, 40, 304.

    28. [28]

      Scherf, U.; Buckel, W. Eur. J. Biochem. 1993, 215, 421.  doi: 10.1111/j.1432-1033.1993.tb18049.x

    29. [29]

      Berg, I. A.; Kockelkorn, D.; Buckel, W.; Fuchs, G. Science 2007, 318, 1782.  doi: 10.1126/science.1149976

    30. [30]

      Ishii, M.; Miyake, T.; Satoh, T.; Sugiyama, H.; Oshima, Y.; Kodama, T.; Igarashi, Y. Arch. Microbiol. 1996, 166, 368.  doi: 10.1007/BF01682981

    31. [31]

      Zarzycki, J.; Brecht, V.; Müller, M.; Fuchs, G. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 21317.  doi: 10.1073/pnas.0908356106

    32. [32]

      Patel, H. M.; Kraszewski, J. L.; Mukhopadhyay, B. J. Bacteriol. 2004, 186, 5129.  doi: 10.1128/JB.186.15.5129-5137.2004

    33. [33]

      Burgess, B. K.; Lowe, D. J. Chem. Rev. 1996, 96, 2983.  doi: 10.1021/cr950055x

    34. [34]

      Shah, V. K.; Brill, W. J. Proc. Natl. Acad. Sci., U. S. A. 1977, 74, 3249.  doi: 10.1073/pnas.74.8.3249

    35. [35]

      Yang, Z.-Y.; Danyal, K.; Seefeldt, L. C. In Nitrogen Fixation. Methods in Molecular Biology (Methods and Protocols), Vol. 766, Ed.: Ribbe, M. W., Humana Press, Heidelberg, 2011, pp. 9~29.

    36. [36]

      Rivera-Ortiz, J. M.; Burris, R. H. J. Bacteriol. 1975, 123, 537.
       

    37. [37]

      Lee, C. C.; Hu, Y.; Ribbe, M. W. Science 2010, 329, 642.  doi: 10.1126/science.1191455

    38. [38]

      Hu, Y.; Lee, C. C.; Ribbe, M. W. Science 2011, 333, 753.  doi: 10.1126/science.1206883

    39. [39]

      Yang, Z.-Y.; Moure, V. R.; Dean, D. R.; Seefeldt, L. C. Proc. Natl. Acad. Sci., U. S. A. 2012, 109, 19644.  doi: 10.1073/pnas.1213159109

    40. [40]

      Seefeldt, L. C.; Rasche, M. E.; Ensign, S. A. Biochemistry 1995, 34, 5382.  doi: 10.1021/bi00016a009

    41. [41]

      Zheng, Y.; Harris, D. F.; Yu, Z.; Fu, Y.; Poudel, S.; Ledbetter, R. N.; Fixen, K. R.; Yang, Z.-Y.; Boyd, E. S.; Lidstrom, M. E.; Seefeldt, L. C.; Harwood, C. S. Nat. Microbiol. 2018, 3, 281.  doi: 10.1038/s41564-017-0091-5

    42. [42]

      Rebelein, J. G.; Stiebritz, M. T.; Lee, C. C.; Hu, Y. Nat. Chem. Biol. 2016, 13, 147.

    43. [43]

      Khadka, N.; Dean, D. R.; Smith, D.; Hoffman, B. M.; Raugei, S.; Seefeldt, L. C. Inorg. Chem. 2016, 55, 8321.  doi: 10.1021/acs.inorgchem.6b00388

    44. [44]

      Lindskog, S. Inorg. Chim. Acta 1983, 79, 36.

    45. [45]

      Savile, C. K.; Lalonde, J. J. Curr. Opin. Biotechnol. 2011, 22, 818.  doi: 10.1016/j.copbio.2011.06.006

    46. [46]

      Smith, K. S.; Jakubzick, C.; Whittam, T. S.; Ferry, J. G. Proc. Natl. Acad. Sci., U. S. A. 1999, 96, 15184.  doi: 10.1073/pnas.96.26.15184

    47. [47]

      Cai, L.-X.; Chu, Y.-M.; Zhang, G.-Y. Chin. J. Biotech. 2019, 31, 1.
       

    48. [48]

      Lehtonen, J.; Shen, B.; Vihinen, M.; Casini, A.; Scozzafava, A.; Supuran, C.; Parkkila, A.-K.; Saarnio, J.; Kivel, A. J.; Waheed, A.; Sly, W.; Parkkila, S. J. Biol. Chem. 2004, 279, 2719.  doi: 10.1074/jbc.M308984200

    49. [49]

      Loferer, M. J.; Tautermann, C. S.; Loeffler, H. H.; Liedl, K. R. J. Am. Chem. Soc. 2003, 125, 8921.  doi: 10.1021/ja035072f

    50. [50]

      Shekh, A.; Kannan, K.; Mudliar, N. S.; Yadav, R.; Fulke, A.; Sivanesan, S. d.; Chakrabarti, T. Crit. Rev. Environ. Sci. Technol. 2011, 42, 1419.

    51. [51]

      Bond, G. M.; Stringer, J.; Brandvold, D. K.; Simsek, F. A.; Medina, M.-G.; Egeland, G. Energy Fuels 2001, 15, 309.  doi: 10.1021/ef000246p

    52. [52]

      Yadav, R. R.; Krishnamurthi, K.; Mudliar, S. N.; Devi, S. S.; Naoghare, P. K.; Bafana, A.; Chakrabarti, T. J. Basic Microbiol. 2014, 54, 472.  doi: 10.1002/jobm.201300849

    53. [53]

      Mirjafari, P.; Asghari, K.; Mahinpey, N. Ind. Eng. Chem. Res. 2007, 46, 921.  doi: 10.1021/ie060287u

    54. [54]

      Xiao, L.; Lian, B. Carbonates Evaporites 2016, 31, 39.  doi: 10.1007/s13146-015-0239-4

    55. [55]

      McQ Gould, S.; Tawfik, D. Biochemistry 2005, 44, 5444.  doi: 10.1021/bi0475471

    56. [56]

      Alvizo, O.; Nguyen, L. J.; Savile, C. K.; Bresson, J. A.; Lakhapatri, S. L.; Solis, E. O. P.; Fox, R. J.; Broering, J. M.; Benoit, M. R.; Zimmerman, S. A.; Novick, S. J.; Liang, J.; Lalonde, J. J. Proc. Natl. Acad. Sci., U. S. A. 2014, 111, 16436.  doi: 10.1073/pnas.1411461111

    57. [57]

      Yoshimoto, M.; Walde, P. World J. Microbiol. Biotechnol. 2018, 34, 151.  doi: 10.1007/s11274-018-2536-2

    58. [58]

      Liu, W.-F.; Wei, L.-N. J. Mol. Catal. 2016, 30, 182.

    59. [59]

      Yoshimoto, M.; Schweizer, T.; Rathlef, M.; Pleij, T.; Walde, P. ACS Omega 2018, 3, 10391.  doi: 10.1021/acsomega.8b01517

    60. [60]

      Maeshima, K.; Yoshimoto, M. Enzyme Microb. Technol. 2017, 105, 9.  doi: 10.1016/j.enzmictec.2017.06.002

    61. [61]

      Cui, J.-D.; Li, Y.; Ji, X.-Y.; Bian, H.-J.; Zhang, Y.-F.; Su, Z.-G.; Ma, G.-H.; Zhang, S.-P. Chem. J. Chin. Univ. 2014, 35, 1999.  doi: 10.7503/cjcu20140059

    62. [62]

      Bulushev, D. A.; Ross, J. R. H. ChemSusChem 2018, 11, 821.  doi: 10.1002/cssc.201702075

    63. [63]

      Kawanami, H.; Himeda, Y.; Laurenczy, G. Adv. Inorg. Chem. 2017, 70, 395.  doi: 10.1016/bs.adioch.2017.04.002

    64. [64]

      Castillo, R.; Oliva, M.; Martí, S.; Moliner, V. J. Phys. Chem. B 2008, 112, 10012.  doi: 10.1021/jp8025896

    65. [65]

      Neuhauser, W.; Steininger, M.; Haltrich, D.; Kulbe, K. D.; Nidetzky, B. Biotechnol. Bioeng. 1998, 60, 277.  doi: 10.1002/(SICI)1097-0290(19981105)60:3<277::AID-BIT2>3.0.CO;2-E

    66. [66]

      Dong, G.; Ryde, U. J. Biol. Inorg. Chem. 2018, 23, 1243.  doi: 10.1007/s00775-018-1608-y

    67. [67]

      Boyington, J. C.; Gladyshev, V. N.; Khangulov, S. V.; Stadtman, T. C.; Sun, P. D. Science 1997, 275, 1305.  doi: 10.1126/science.275.5304.1305

    68. [68]

      Schrapers, P.; Hartmann, T.; Kositzki, R.; Dau, H.; Reschke, S.; Schulzke, C.; Leimkühler, S.; Haumann, M. Inorg. Chem. 2015, 54, 3260.  doi: 10.1021/ic502880y

    69. [69]

      Mota, C. S.; Rivas, M. G.; Brondino, C. D.; Moura, I.; Moura, J. J. G.; González, P. J.; Cerqueira, N. M. F. S. A. J. Biol. Inorg. Chem. 2011, 16, 1255.  doi: 10.1007/s00775-011-0813-8

    70. [70]

      Dobbek, H. Coord. Chem. Rev. 2011, 255, 1104.  doi: 10.1016/j.ccr.2010.11.017

    71. [71]

      Parkinson, B. A.; Weaver, P. F. Nature 1984, 309, 148.  doi: 10.1038/309148a0

    72. [72]

      Lu, Y.; Jiang, Z.-Y.; Xu, S.-W.; Wu, H. Catal. Today 2006, 115, 263.  doi: 10.1016/j.cattod.2006.02.056

    73. [73]

      Yadav, R. K.; Baeg, J.-O.; Oh, G. H.; Park, N.-J.; Kong, K.-j.; Kim, J.; Hwang, D. W.; Biswas, S. K. J. Am. Chem. Soc. 2012, 134, 11455.  doi: 10.1021/ja3009902

    74. [74]

      Choe, H.; Joo, J. C.; Cho, D. H.; Kim, M. H.; Lee, S. H.; Jung, K. D.; Kim, Y. H. PLoS One 2014, 9, e103111.  doi: 10.1371/journal.pone.0103111

    75. [75]

      Yadav, R. K.; Baeg, J.-O.; Kumar, A.; Kong, K.-j.; Oh, G. H.; Park, N.-J. J. Mater. Chem. A 2014, 2, 5068.  doi: 10.1039/c3ta14442a

    76. [76]

      Woolerton, T. W.; Sheard, S.; Reisner, E.; Pierce, E.; Ragsdale, S. W.; Armstrong, F. A. J. Am. Chem. Soc. 2010, 132, 2132.  doi: 10.1021/ja910091z

    77. [77]

      Xu, C.-Y.; Lin, J.-Y.; Pan, F.-Q.; Den, B.-W.; Wang, Z.-H.; Zhou, J.-H.; Chen, Y.; Ma, J.-C.; Gu, Z.-E.; Zhang, Y.-W. Acta Chim. Sinica 2017, 75, 699.  doi: 10.11862/CJIC.2017.051
       

    78. [78]

      Jeoung, J.-H.; Martins, B. M.; Dobbek, H. In Metalloproteins: Methods and Protocols, Vol. 3, Ed.: Hu, Y., Springer, New York, 2019, pp. 37~54.

    79. [79]

      Appel, A. M.; Bercaw, J. E.; Bocarsly, A. B.; Dobbek, H.; DuBois, D. L.; Dupuis, M.; Ferry, J. G.; Fujita, E.; Hille, R.; Kenis, P. J. A.; Kerfeld, C. A.; Morris, R. H.; Peden, C. H. F.; Portis, A. R.; Ragsdale, S. W.; Rauchfuss, T. B.; Reek, J. N. H.; Seefeldt, L. C.; Thauer, R. K.; Waldrop, G. L. Chem. Rev. 2013, 113, 6621.  doi: 10.1021/cr300463y

    80. [80]

      Parkin, A.; Seravalli, J.; Vincent, K. A.; Ragsdale, S. W.; Armstrong, F. A. J. Am. Chem. Soc. 2007, 129, 10328.  doi: 10.1021/ja073643o

    81. [81]

      Jeoung, J.-H.; Dobbek, H. Science 2007, 318, 1461.  doi: 10.1126/science.1148481

    82. [82]

      Miyazaki, S.; Koga, Y.; Matsumoto, T.; Matsubara, K. Chem. Commun. 2010, 46, 1932.  doi: 10.1039/b924716e

    83. [83]

      Wu, Y.-Z.; Shi, J.-F.; Ding, F.; Zhao, J.-J.; Zou, X.-Y.; Wang, M.-R.; Zhang, S.-H.; Tong, Z.-W.; Zhang, S.-P.; Jiang, Z.-Y. Sci. Sin. Chim. 2017, 47, 315.

    84. [84]

      Shin, W.; Lee, S. H.; Shin, J. W.; Lee, S. P.; Kim, Y. J. Am. Chem. Soc. 2003, 125, 14688.  doi: 10.1021/ja037370i

    85. [85]

      Glueck, S. M.; Gümüs, S.; Fabian, W. M. F.; Faber, K. Chem. Soc. Rev. 2010, 39, 313.  doi: 10.1039/B807875K

    86. [86]

      Allen, J. R.; Ensign, S. A. J. Bacteriol. 1996, 178, 1469.  doi: 10.1128/jb.178.5.1469-1472.1996

    87. [87]

      Boll, M.; Fuchs, G. Biol. Chem. 2005, 386, 989.  doi: 10.1515/BC.2005.115

    88. [88]

      Huang, J.; He, Z.; Wiegel, J. J. Bacteriol. 1999, 181, 5119.

    89. [89]

      Wieser, M.; Yoshida, T.; Nagasawa, T. J. Mol. Catal. B:Enzym. 2001, 11, 179.  doi: 10.1016/S1381-1177(00)00038-2

    90. [90]

      Miyazaki, M.; Shibue, M.; Ogino, K.; Nakamura, H.; Maeda, H. Chem. Commun. 2001, 18, 1800.

    91. [91]

      Tong, X.; El-Zahab, B.; Zhao, X.; Liu, Y.; Wang, P. Biotechnol. Bioeng. 2011, 108, 465.  doi: 10.1002/bit.22938

    92. [92]

      Liu, W.-F.; Hou, Y.-H.; Hou, B.-X.; Zhao, Z.-P. Chinese J. Chem. Eng. 2014, 22, 1328.

    93. [93]

      Liu, W.-F.; Hou, B.-X.; Hou, Y.-H.; Zhao, Z.-P. Chinese J. Catal. 2012, 33, 730.

    94. [94]

      Li, R.; Wang, Z.; Ni, P.; Zhao, Y.; Li, M.; Li, L. Fuel 2014, 128, 180.  doi: 10.1016/j.fuel.2014.03.011

    95. [95]

      Jadhav, S. G.; Vaidya, P. D.; Bhanage, B. M.; Joshi, J. B. Chem. Eng. Res. Des. 2014, 92, 2557.  doi: 10.1016/j.cherd.2014.03.005

    96. [96]

      Goeppert, A.; Czaun, M.; Jones, J.-P.; Surya Prakash, G. K.; Olah, G. A. Chem. Soc. Rev. 2014, 43, 7995.  doi: 10.1039/C4CS00122B

    97. [97]

      Wang, W.-H.; Himeda, Y.; Muckerman, J. T.; Manbeck, G. F.; Fujita, E. Chem. Rev. 2015, 115, 12936.  doi: 10.1021/acs.chemrev.5b00197

    98. [98]

      Kuwabata, S.; Tsuda, R.; Yoneyama, H. J. Am. Chem. Soc. 1994, 116, 5437.  doi: 10.1021/ja00091a056

    99. [99]

      Baskaya, F. S.; Zhao, X.; Flickinger, M. C.; Wang, P. Appl. Biochem. Biotechnol. 2010, 162, 391.  doi: 10.1007/s12010-009-8758-x

    100. [100]

      Xu, S.-W.; Lu, Y.; Li, J.; Jiang, Z.-Y.; Wu, H. Ind. Eng. Chem. Res. 2006, 45, 4567.  doi: 10.1021/ie051407l

    101. [101]

      Sun, Q.; Jiang, Y.; Jiang, Z.; Zhang, L.; Sun, X.; Li, J. Ind. Eng. Chem. Res. 2009, 48, 4210.  doi: 10.1021/ie801931j

    102. [102]

      Jiang, Y.; Sun, Q.; Zhang, L.; Jiang, Z. J. Mater. Chem. 2009, 19, 9068.  doi: 10.1039/b914268a

    103. [103]

      Wang, X.; Li, Z.; Shi, J.; Wu, H.; Jiang, Z.; Zhang, W.; Song, X.; Ai, Q. ACS Catal. 2014, 4, 962.  doi: 10.1021/cs401096c

    104. [104]

      Aresta, M.; Dibenedetto, A.; Baran, T.; Angelini, A.; Labuz, P.; Macyk, W. Beilstein J. Org. Chem. 2014, 10, 2556.  doi: 10.3762/bjoc.10.267

    105. [105]

      El-Zahab, B.; Donnelly, D.; Wang, P. Biotechnol. Bioeng. 2008, 99, 508.  doi: 10.1002/bit.21584

    106. [106]

      Ji, X.; Su, Z.; Wang, P.; Ma, G.; Zhang, S. ACS Nano 2015, 9, 4600.  doi: 10.1021/acsnano.5b01278

    107. [107]

      Singh, R. K.; Singh, R.; Sivakumar, D.; Kondaveeti, S.; Kim, T.; Li, J.; Sung, B. H.; Cho, B.-K.; Kim, D. R.; Kim, S. C.; Kalia, V. C.; Zhang, Y.-H. P. J.; Zhao, H.; Kang, Y. C.; Lee, J.-K. ACS Catal. 2018, 8, 11085.  doi: 10.1021/acscatal.8b02646

    108. [108]

      Calvin, M.; Massini, P. Experientia 1952, 8, 445.  doi: 10.1007/BF02139287

    109. [109]

      Wendell, D.; Todd, J.; Montemagno, C. Nano Lett. 2010, 10, 3231.  doi: 10.1021/nl100550k

    110. [110]

      Atsumi, S.; Higashide, W.; Liao, J. C. Nat. Biotechnol. 2009, 27, 1177.  doi: 10.1038/nbt.1586

    111. [111]

      Wang, W.; Yan, Z.-J.; Yuan, Y.; Sun, F.-X.; Zhao, M.; Ren, H.; Zhu, G.-S. Acta Chim. Sinica 2014, 72, 557.
       

    112. [112]

      Jia, J.-T.; Wang, L.; Zhao, Q.; Sun, F.-X.; Zhu, G.-S. Acta Chim. Sinica 2013, 71, 1492.
       

  • 加载中
    1. [1]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    2. [2]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    3. [3]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    6. [6]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    7. [7]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    14. [14]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    15. [15]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Hui Shi Shuangyan Huan Yuzhi Wang . Ideological and Political Design of Potassium Permanganate Oxidation-Reduction Titration Experiment. University Chemistry, 2024, 39(2): 175-180. doi: 10.3866/PKU.DXHX202308042

    20. [20]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

Metrics
  • PDF Downloads(91)
  • Abstract views(4049)
  • HTML views(1037)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return