Citation: Shao Wenbo, An Quanlin, Cao Xin, Yu Biao. Efficient Synthesis of Representative Flavone-7-O-Glycosides[J]. Acta Chimica Sinica, ;2019, 77(10): 999-1007. doi: 10.6023/A19060233 shu

Efficient Synthesis of Representative Flavone-7-O-Glycosides

  • Corresponding author: Cao Xin, caox@fudan.edu.cn Yu Biao, byu@sioc.ac.cn
  • Received Date: 25 June 2019
    Available Online: 17 October 2019

    Fund Project: the Funds from the National Natural Science Foundation of China 21621002Project supported by the Funds from the National Natural Science Foundation of China (Nos. 21432012, 21621002), the Chinese Academy of Sciences (Strategic Priority Research Program, No. XDB20020200), the Youth Innovation Promotion Association (No. 2017300) and the K.C. Wong Education Foundationthe Chinese Academy of Sciences (Strategic Priority Research Program) XDB20020200the Funds from the National Natural Science Foundation of China 21432012the Youth Innovation Promotion Association 2017300

Figures(3)

  • Apigenin-7-O-β-D-glucuronide (1) and scutellarin (scutellarein-7-O-β-D-glucuronide, 2) are two major flavone glucuronide components occurring in breviscapines, which are prepared from the traditional Chinese herb Erigeron breviscapus. These two flavone glycosides show potent anti-oxidative, anti-inflammatory and neuroprotective activities in various evaluations. Synthesis of these natural glycosides in an efficiently manner would facilitate studies on their structure activity relationships. As a persistent effort on the chemical syntheses of the diverse glycoconjugates from traditional Chinese herbs in our group, we report herein the synthesis of these two representative flavone O-glucuronides. It is known that the solubility of flavone compounds is rather low and this property would greatly hinder their glycosylation reactions. In order to increase the solubility of the flavone derivatives in the glycosylation solvents, hexanoyl and benzyl groups were selected as the permanent protecting groups for the hydroxyl groups of apigenin (7) and scutellarein (8). The construction of the phenolic O-glucuronide is known to be a difficult task, especially the glycosylation of the poorly nucleophilic 7-hydroxyl group which locates at the para-position of the flavone carbonyl group. We achieved the glycosylation of the flavone 7-OH with 2, 3, 4-tri-O-benzoyl-6-O-TBDPS-glucopyranosyl ortho-alkynylbenzoate (9) under the catalysis of Ph3PAuNTf2 (0.2 equiv., 4 Å MS, CH2Cl2, r.t., 5 h) in excellent yields. After that, the 6-O-TBDPS groups were removed, and the requisite glucuronides were then elaborated by oxidation of the resulting 6-OH under the conditions of DAIB/TEMPO (CH2Cl2/H2O, V:V=2:1, r.t.) in good yields. After global deprotection, the desired products apigenin-7-O-β-D-glucuronide (1) and scutellarin (2) were obtained in overall yields of 36% (5 steps) and 7% (9 steps), respectively, from the starting flavone aglycones. Following the same strategy, four naturally occurring flavone-7-O-glycosides, namely apigetrin (3), plantaginin (4), apigenin 7-O-β-D-xylopyranoside (5) and apigenin 7-O-α-L-rhamnopyranoside (6), were smoothly synthesized in 4~7 steps with the overall yields of 61%, 13%, 58% and 61%, respectively.
  • 加载中
    1. [1]

      (a) Cui, J. M.; Wu, S. Nat. Prod. Res. Dev. 2003, 15, 255. (b) Ma, Y. H.; Luo, G. A.; Wang, Y. M. Chin. Tradit. Pat. Med. 2004, 1, 63. (c) Wang, J.; Zhang, L.; Liu, B.; Wang, Q.; Chen, Y.; Wang, Z.; Zhou, J.; Xiao, W.; Zheng, C.; Wang, Y. J. Ethnopharmacol. 2018, 224, 429.

    2. [2]

      (a) Yue, J. M.; Lin, Z. W.; Wang, D. Z. Phytochemistry 1994, 36, 717. (b) Xia, H. J.; Qiu, F.; Zhu, S.; Zhang, T. Y.; Qu, G. X.; Yao, X. S. Biol. Pharm. Bull. 2007, 30, 1308.

    3. [3]

      (a) Liu, Q.; Li, X.; Ouyang, X.; Chen, D. Molecules 2018, 23, 3225. (b) Sang, Z.; Li, Y.; Qiang, X.; Xiao, G.; Liu, Q.; Tan, Z.; Deng, Y. Bioorg. Med. Chem. 2015, 23, 668.

    4. [4]

      (a) Wu, W. H.; Chen, T. Y.; Lu, R. W.; Chen, S. T.; Chang, C. C. Phytochemistry 2012, 83, 110. (b) Chen, V.; Staub, R. E.; Baggett, S.; Chimmani, R.; Tagliaferri, M.; Cohen, I.; Shtivelman, E. PLoS One 2012, 7, e30107.

    5. [5]

      (a) Huang, X. W.; Xu, Y.; Sui, X.; Lin, H.; Xu, J. M.; Han, D.; Ye, D. D.; Lv, G. F.; Liu, Y. X.; Qu, X. B.; Duan, M. H. Oncol. Lett. 2019, 17, 5581. (b) Li, H. M.; Gu, T.; Wu, W. Y.; Yu, S. P.; Fan, T. Y.; Zhong, Y.; Li, N. G. Med. Chem. 2018, 14, 1.

    6. [6]

      (a) Sherbeiny, E.; Ansari, E. Planta Med. 1976, 29, 129. (b) Homberg, H.; Geiger, H. Phytochemistry 1980, 19, 2443. (c) Smirnova, L. P.; GlyzinA, V. I.; Patudin, A. V.; Bankovskii, A. I. Chem. Nat. Compd. 1974, 10, 687. (d) Shabrawy, M. O. A.; Hosni, H. A.; Garf, I. A.; Marzouk, M. M.; Kawashty, S. A.; Saleh, N. A. M. Biochem. Syst. Ecol. 2014, 56, 125.

    7. [7]

      (a) Jacobsson, M.; Malmberg, J.; Ellervik, U. Carbohydr. Res. 2006, 341, 1266. (b) Sun, J. S.; Laval, S.; Yu, B. Synthesis 2014, 46, 1030. (c) Li, Y.; Yang, W. Z.; Ma, Y.; Sun, J. S.; Shan, L.; Zhang, W. D.; Yu, B. Synlett 2011, 915. (d) Yang, W. Z.; Sun, J. S.; Yang, Z.; Han, W.; Zhang, W. D.; Yu, B. Tetrahedron Lett. 2012, 53, 2773. (e) Hu, Y.; Tu, Y. H.; Liu, D. Y.; Liao, J. X.; Sun, J. S. Org. Biomol. Chem. 2016, 14, 4842. (f) Liao, J. X.; Fan, N. L.; Liu, H.; Tu, Y. H.; Sun, J. S. Org. Biomol. Chem. 2016, 14, 1221. (g) Wang, Y.; Liu, M.; Liu, L.; Xia, J. H.; Du, Y. G.; Sun, J. S. J. Org. Chem. 2018, 83, 4111.

    8. [8]

      (a) Farkas, L.; Mezey-Vandor, G.; Nogradi, M. Chem. Ber. 1971, 104, 2681. (b) Farkas, L.; Mezey-Vandor, G.; Nogradi, M. Chem. Ber. 1974, 107, 3874. (c) Synthesis for 1: Li, P. H.; Zhang, Z. P.; Zhang, W.; Yang, Z. X. CN 104761599, 2015. (d) Synthesis of 2: (i) Nagashima, S.; Hirotani, M.; Yoshikawa, T. Phytochemistry 2000, 53, 533; (ii) Li, P. H.; Zhang, W.; Yang, Z. X.; Zhang, X. B.; Wang, J.; Zhu, H. B.; Chen, J. X.; Bai, Y. Y. EP 2840088, 2015. (e) Synthesis of 3: (i) Nakaoki, N. Yakugaku Zasshi 1940, 60, 502. (ii) Oyama, K. I.; Kondo, T. Tetrahedron 2004, 60, 2025; (iii) Liu, J. D.; Chen, L.; Cai, S. L.; Wang, Q. Carbohydr. Res. 2012, 357, 41; (iv) Zheng, Z. W.; Han, Z. Y.; Cai, L.; Zhou, D. D.; Chavis, B. R.; Li, C. S.; Sui, Q.; Jiang, K. Y.; Gao, Q. Tetrahedron Lett. 2018, 59, 4442. (f) Synthesis of 4: Li, N. G.; Shen, M. Z.; Wang, Z. J.; Tang, Y. P.; Shi, Z. H.; Fu, Y. F.; Shi, Q. P.; Tang, H.; Duan, J. A. Bioorg. Med. Chem. Lett. 2013, 23, 102.

    9. [9]

      (a) Li, Y.; Yang, Y.; Yu, B. Tetrahedron Lett. 2008, 49, 3604. (b) Li, Y.; Yang, X.; Liu, Y.; Zhu, C.; Yang, Y.; Yu, B. Chem.-Eur. J. 2010, 16, 1871. (c) Zhu, Y.; Yu, B. Angew. Chem., Int. Ed. 2011, 50, 8329; (d) Tang, Y.; Li, J.; Zhu, Y.; Li, Y.; Yu, B. J. Am. Chem. Soc. 2013, 135, 18396. (e) Li, W.; Yu, B. Chem. Soc. Rev. 2018, 47, 7954. (f) Yu, B. Acc. Chem. Res. 2018, 51, 507.

    10. [10]

      (a) Zhu, D.; Yu, B. Chin. J. Chem. 2018, 36, 681. (b) Li, J.; Yu, B. Angew. Chem., Int. Ed. 2015, 54, 6618. (c) Bai, Y.; Shen, X.; Li, Y.; Dai, M. J. Am. Chem. Soc. 2016, 138, 10838. (d) Wang, B.; Liu, Y.; Jiao, R.; Feng, Y.; Li, Q.; Chen, C.; Liu, L.; He, G.; Chen, G. J. Am. Chem. Soc. 2016, 138, 3926. (e) Nicolaou, K. C.; Cai, Q.; Sun, H.; Qin, B.; Zhu, S. J. Am. Chem. Soc. 2016, 138, 3118. (f) Nie, S. Y.; Li, W.; Yu, B. J. Am. Chem. Soc. 2014, 136, 4157. (g) Zhang, X.; Zhou, Y.; Zuo, J.; Yu, B. Nat. Commun. 2015, 6, 5879. (h) Shen, R. Z.; Cao, X.; Yu. B. Acta Chim. Sinica 2018, 76, 278. (沈仁增, 曹鑫, 俞飚, 化学学报, 2018, 76, 278.)

    11. [11]

      (a) Yang, W. Z.; Sun, J. S.; Lu, W. X.; Li, Y.; Shan, L.; Han, W.; Zhang, W. D.; Yu, B. J. Org. Chem. 2010, 75, 6879. (b) Yang, W. Z.; Li R. Y.; Han, W.; Zhang, W. D.; Sun, J. S. Chin. J. Org. Chem. 2012, 32, 1067. (杨为准, 李荣耀, 韩伟, 张卫东, 孙建松, 有机化学, 2012, 32, 1067.)

    12. [12]

      Liu, X.; Wen, G. E.; Liu, J. C.; Liao, J. X.; Sun, J. S. Carbohydr. Res. 2019, 475, 69.  doi: 10.1016/j.carres.2019.02.005

    13. [13]

      Karst, N.; Jean-Claude, J. J. Chem. Soc., Perkin Trans. 1 2000, 16, 2709.

    14. [14]

      Yu, J.; Sun, J. S.; Niu, Y. M.; Li, R. Y.; Liao, J. X.; Zhang, F. Y.; Yu, B. Chem. Sci. 2013, 4, 3899.  doi: 10.1039/c3sc51479j

    15. [15]

      (a) Zulueta, M. M. L.; Lin, S. Y.; Lin, Y. T.; Huang, C. J.; Wang, C. C.; Ku, C. C.; Shi, Z.; Chyan, C. L.; Irene, D.; Lim, L. H.; Tsai, T. I.; Hu, Y. P.; Arco, S. D.; Wong, C. H.; Hung, S. C. J. Am. Chem. Soc. 2012, 134, 8988. (b) Chang, C. H.; Lico, L. S.; Huang, T. Y.; Lin, S. Y.; Chang, C. L.; Arco, S. D.; Hung, S. C. Angew. Chem., Int. Ed. 2014, 53, 9876.

    16. [16]

      Li, M.; Han, X. W.; Yu, B. J. Org. Chem. 2003, 68, 6842.  doi: 10.1021/jo034553e

    17. [17]

      Gao, Q.; Lian, G. Y.; Lin, F. Carbohydr. Res. 2008, 344, 511.

  • 加载中
    1. [1]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    5. [5]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    9. [9]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Huizhong WuRuiheng LiangGe SongZhongzheng HuXuyang ZhangMinghua Zhou . Enhanced interfacial charge transfer on Bi metal@defective Bi2Sn2O7 quantum dots towards improved full-spectrum photocatalysis: A combined experimental and theoretical investigation. Chinese Chemical Letters, 2024, 35(6): 109131-. doi: 10.1016/j.cclet.2023.109131

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(16)
  • Abstract views(1441)
  • HTML views(147)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return