Citation: Niu Hongyan, Hu Zhengli, Ying Yilun, Long Yi-Tao. Detection of Single c-di-AMP by an Aerolysin Nanopore[J]. Acta Chimica Sinica, ;2019, 77(10): 989-992. doi: 10.6023/A19060230 shu

Detection of Single c-di-AMP by an Aerolysin Nanopore

  • Corresponding author: Ying Yilun, yilunying@nj.edu.cn
  • Received Date: 24 June 2019
    Available Online: 13 October 2019

    Fund Project: the National Ten Thousand Talent Program for Young Top-notch Talent AAAthe National Natural Science Foundation of China 21834001the National Natural Science Foundation of China 61871183the National Natural Science Foundation of China 21922405Project supported by the National Natural Science Foundation of China (Nos. 21922405, 61871183 and 21834001) and the National Ten Thousand Talent Program for Young Top-notch Talent

Figures(3)

  • Cyclic di-AMP (c-di-AMP) is a ubiquitous second messenger in prokaryotic cells. c-di-AMP can not only effectively regulate various physiological processes such as cell growth, ion transport and cell wall metabolism balance, but also trigger type I interferon response to inspire the body's immune response. Nanopore-based single molecule detection technology is an emerging single molecule detection method which is currently applied to various fields since it has many advantages such as high speed, label-free, high sensitivity and low cost. Aerolysin is a robust biological nanopore with high temporal resolution and high current resolution, which has achieved single oligonucleotide detection, polysaccharide analysis and the studies of enzymolysis kinetics. Aerolysin nanopore is negatively-charged protein nanopore which has numerous negatively charged amino acid residues around its cis entrances. The electrostatic repulsion between the negatively charged c-di-AMP and negatively charged amino acid residues around the cis entrances prevents c-di-AMP entering the nanopore. In this study, 1.0 mol/L LiCl was used as electrolyte solution to facilitate aerolysin analysis of single c-di-AMP molecule. Each event can be characterized by two parameters, the current blockade, I/I0, and the blockade time, τoff. The blockades are classified into two populations as PI and PII. The PI events are assigned to c-di-AMP that bump into the pore and then diffuse away. PII events are assigned to traversing of c-di-AMP through the nanopore. Compared with potassium ions, lithium ion can be more effectively to associate with the negative charges on the aerolysin nanopore surface and reduce the electrostatic repulsion between the c-di-AMP molecule and the Aerolysin. The results showed that number of PI events in per minute was significantly increased in 1.0 mol/L LiCl. The number of PI events in per minute in LiCl is 30 times than that in KCl at 90 mV. Hence, Aerolysin nanopore can be used as an ultrasensitive single molecule sensor for cyclic dinucleotides.
  • 加载中
    1. [1]

      Maelfait, J.; Rehwinkel, J. Immunity 2017, 46, 337.  doi: 10.1016/j.immuni.2017.03.005

    2. [2]

      Dey, B.; Dey, R. J.; Cheung, L. S.; Pokkali, S.; Guo, H.; Lee, J. H.; Bishai, W. R. Nat. Med. 2015, 21, 401.  doi: 10.1038/nm.3813

    3. [3]

      Corrigan, R. M.; Campeotto, I.; Jeganathan, T.; Roelofs, K. G.; Lee, V. T.; Gründling, A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 9084.  doi: 10.1073/pnas.1300595110

    4. [4]

      Underwood, A. J.; Zhang, Y.; Metzger, D. W.; Bai, G. J. Microbiol. Meth. 2014, 107, 58.  doi: 10.1016/j.mimet.2014.08.026

    5. [5]

      Bai, Y.; Yang, J.; Zhou, X.; Ding, X.; Eisele, L. E.; Bai, G. PLoS One 2012, 7, e35206.  doi: 10.1371/journal.pone.0035206

    6. [6]

      Barker, J. R.; Koestler, B. J.; Carpenter, V. K.; Burdette, D. L.; Waters, C. M.; Vance, R. E.; Valdivia, R. H. mBio. 2013, e00018.

    7. [7]

      Kellenberger, C. A.; Wilson, S. C.; Sales-Lee, J.; Hammond, M. C. J. Am. Chem. Soc. 2013, 135, 4906.  doi: 10.1021/ja311960g

    8. [8]

      Underwood, A. J.; Zhang, Y.; Metzger, D. W.; Bai, G. J. Microbiol. Methods 2014, 107, 58.  doi: 10.1016/j.mimet.2014.08.026

    9. [9]

      Cao, C.; Long, Y.-T. Acc. Chem. Res. 2018, 5, 331.

    10. [10]

      Li, Q.; Lin, Y.; Ying, Y.-L.; Liu, S.-C.; Long, Y.-T. Sci. Sin. Chim. 2017, 47, 1445 (in Chinese).

    11. [11]

      Jiang, Y.; Feng, Y.; Su, J.; Nie, J.; Cao, L.; Mao, L.; Jiang, L.; Guo, W. J. Am. Chem. Soc. 2017, 139, 18739.  doi: 10.1021/jacs.7b11732

    12. [12]

      Qiu, H.; Sarathy, A.; Schulten, K.; Leburton, J. P. npj 2D Mater. Appl. 2017, 1, 3.  doi: 10.1038/s41699-017-0005-7

    13. [13]

      Sha, J. J.; Shi, H.; Zhang, Y.; Chen, C.; Liu, L.; Chen, Y. ACS Sensors 2017, 2, 506.  doi: 10.1021/acssensors.6b00718

    14. [14]

      Kasianowicz, J.; Brandin, E.; Branton, D.; Deamer, D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770.  doi: 10.1073/pnas.93.24.13770

    15. [15]

      Ying, Y.; Zhang, X.; Liu, Y.; Xue, M.; Li, H.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44 (in Chinese).
       

    16. [16]

      Ying, Y.-L.; Chao, C.; Hu, Y.-X.; Long, Y.-T. Natl. Sci. Rev. 2018, 5, 450.  doi: 10.1093/nsr/nwy029

    17. [17]

      Sha, J. J.; Xu, B.; Chen, Y. F.; Yang, Y. J. Acta Chim. Sinica 2017, 75, 1121 (in Chinese).
       

    18. [18]

      Qiu, H.; Girdhar, A.; Schulten, K.; Leburton, J. P. ACS Nano 2016, 10, 4482.  doi: 10.1021/acsnano.6b00226

    19. [19]

      Parker, M. W.; Buckley, J. T.; Postma, J. P. M.; Tucker, A. D.; Leonard, K.; Pattus, F.; Tsernoglou, D. Nature 1994, 367, 292.  doi: 10.1038/367292a0

    20. [20]

      Cao, C.; Liao, D. F.; Ying, Y. L.; Long, Y. T. Acta Chim. Sinica 2016, 74, 734 (in Chinese).
       

    21. [21]

      Cao, C.; Ying, Y. L.; Hu, Z. L.; Liao, D. F.; Tian, H.; Long, Y. T. Nat. Nanotech. 2016, 11, 713.  doi: 10.1038/nnano.2016.66

    22. [22]

      Fennouri, A.; Przybylski, C.; Pastoriza-Gallego, M.; Bacri, L.; Auvray, L.; Daniel, R. ACS Nano 2012, 6, 9672.  doi: 10.1021/nn3031047

    23. [23]

      Hu, Z.; Du, J.; Ying, Y.; Peng, Y.; Cao, C.; Long, Y.-T. Acta Chim. Sinica 2017, 75, 1087 (in Chinese).
       

    24. [24]

      Xi, D.; Shang, J.; Fan, E.; You, J.; Zhang, S.; Wang, H. Anal. Chem. 2016, 88, 10540.  doi: 10.1021/acs.analchem.6b02620

    25. [25]

      Cressiot, B.; Braselmann, E.; Oukhaled, A.; Elcock, A. H.; Pelta, J.; Clark, P. L. ACS Nano 2015, 9, 9050.  doi: 10.1021/acsnano.5b03053

    26. [26]

      Hu, Z. L.; Li, M. Y.; Liu, S. C.; Ying, Y. L.; Long, Y. T. Chem. Sci. 2019, 10, 354.  doi: 10.1039/C8SC03927E

    27. [27]

      Yang, J.; Li, S.; Wu, X.-Y.; Long, Y.-T. Chin. J. Anal. Chem. 2017, 45, 1766.  doi: 10.1016/S1872-2040(17)61053-3

    28. [28]

      Iacovache, I.; De Carlo, S.; Cirauqui, N.; Dal Peraro, M.; Van Der Goot, F. G.; Zuber, B. Nat. Commun. 2016, 7, 12062.  doi: 10.1038/ncomms12062

    29. [29]

      Kowalczyk, S. W.; Wells, D. B.; Aksimentiev, A.; Dekker, C. Nano Lett. 2012, 12, 1038.  doi: 10.1021/nl204273h

    30. [30]

      Boukhet, M.; Piguet, F.; Ouldali, H.; Pastoriza-Gallego, M.; Pelta, J.; Oukhaled, A. Nanoscale 2016, 8, 18352.  doi: 10.1039/C6NR06936C

    31. [31]

      Bhattacharya, S.; Muzard, J.; Payet, L.; Mathé, J.; Bockelmann, U.; Aksimentiev, A.; Viasnoff, V. J. Phys. Chem. C 2011, 115, 4255.

    32. [32]

      Sutherland, T. C.; Long, Y. T.; Stefureac, R. I.; Bediako-Amoa, I.; Kraatz, H. B.; Lee, J. S. Nano Lett. 2004, 4, 1273.  doi: 10.1021/nl049413e

    33. [33]

      Stefureac, R.; Long, Y. T.; Kraatz, H. B.; Howard, P.; Lee, J. S. Biochemistry 2006, 45, 9172.  doi: 10.1021/bi0604835

    34. [34]

      Kasianowicz, J. J.; Brandin, E.; Branton, D.; Deamer, D. W. P. Natl. Acad. Sci. 1996, 93, 13770.  doi: 10.1073/pnas.93.24.13770

    35. [35]

      Corrigan, R. M.; Abbott, J. C.; Burhenne, H.; Kaever, V.; Gründling, A. PLoS Pathog. 2011, 7, e1002217.  doi: 10.1371/journal.ppat.1002217

    36. [36]

      Corrigan, R. M.; Bowman, L.; Willis, A. R.; Kaever, V.; Gründling, A. J. Biol. Chem. 2015, 290, 5826.  doi: 10.1074/jbc.M114.598300

    37. [37]

      Dengler, V.; McCallum, N.; Kiefer, P.; Christen, P.; Patrignani, A.; Vorholt, J. A.; BergerBächi, B.; Senn, M. M. PLoS One 2013, 8, e73512.  doi: 10.1371/journal.pone.0073512

    38. [38]

      Cao, C.; Liao, D. F.; Yu, J.; Tian, H.; Long, Y. T. Nat. Protoc. 2017, 12, 1901.  doi: 10.1038/nprot.2017.077

  • 加载中
    1. [1]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    2. [2]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    3. [3]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    7. [7]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    8. [8]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    9. [9]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    15. [15]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    20. [20]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

Metrics
  • PDF Downloads(4)
  • Abstract views(1303)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return