Flexible Electronic Skin with Multisensory Integration
- Corresponding author: Zhu Rong, zr_gloria@mail.tsinghua.edu.cn
Citation: Zhao Shuai, Zhu Rong. Flexible Electronic Skin with Multisensory Integration[J]. Acta Chimica Sinica, ;2019, 77(12): 1250-1262. doi: 10.6023/A19060227
Kim, D. H.; Lu, N.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; Yu, K. J.; Kim, T. I.; Chowdhury, R.; Ying, M.; Xu, L.; Li, M.; Chung, H. J.; Keum, H.; McCormick, M.; Liu, P.; Zhang, Y. W.; Omenetto, F. G.; Huang, Y.; Coleman, T.; Rogers, J. A. Science 2011, 333, 838.
doi: 10.1126/science.1206157
Chortos, A.; Liu, J.; Bao, Z. Nat. Mater. 2016, 15, 937.
doi: 10.1038/nmat4671
Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwodiauer, R.; Graz, I.; Bauer-Gogonea, S.; Bauer, S.; Someya, T. Nature 2013, 499, 458.
doi: 10.1038/nature12314
Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z. L. Adv. Sci. 2015, 2, 1500169.
doi: 10.1002/advs.201500169
Xu, K.; Lu, Y.; Takei, K. Adv. Mater. Technol. 2019, 4, 1800628.
doi: 10.1002/admt.201800628
Kim, J.; Campbell, A. S.; de Avila, B. E.; Wang, J. Nat. Biotechnol. 2019, 37, 389.
doi: 10.1038/s41587-019-0045-y
Lai, Y. C.; Deng, J.; Liu, R.; Hsiao, Y. C.; Zhang, S. L.; Peng, W.; Wu, H. M.; Wang, X.; Wang, Z. L. Adv. Mater. 2018, 30, 1801114.
doi: 10.1002/adma.201801114
Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S.; Chu, K.; Jeon, D.; Lee, S. T.; Kim, J. H.; Choi, S. H.; Hyeon, T.; Kim, D. H. Nat. Commun. 2014, 5, 5747.
doi: 10.1038/ncomms6747
Qian, X.; Su, M.; Li, F.; Song, Y. Acta Chim. Sinica 2016, 74, 565 (in Chinese).
doi: 10.3866/PKU.WHXB201511301
Johansson, R. S.; Flanagan, J. R. Nat. Rev. Neurosci. 2009, 10, 345.
Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H. Sci. Adv. 2015, 1, e1500661.
doi: 10.1126/sciadv.1500661
Wang, Q.; Jian, M.; Wang, C.; Zhang, Y. Adv. Funct. Mater. 2017, 27, 1605657.
doi: 10.1002/adfm.201605657
Mannsfeld, S. C.; Tee, B. C.; Stoltenberg, R. M.; Chen, C. V.; Barman, S.; Muir, B. V.; Sokolov, A. N.; Reese, C.; Bao, Z. Nat. Mater. 2010, 9, 859.
doi: 10.1038/nmat2834
Chen, X.; Shao, J.; An, N.; Li, X.; Tian, H.; Xu, C.; Ding, Y. J. Mater. Chem. C 2015, 3, 11806.
doi: 10.1039/C5TC02173A
Wang, X.; Zhang, H.; Dong, L.; Han, X.; Du, W.; Zhai, J.; Pan, C.; Wang, Z. L. Adv. Mater. 2016, 28, 2896.
doi: 10.1002/adma.201503407
Zhao, S.; Zhu, R. Adv. Mater. Technol. 2017, 2, 1700183.
doi: 10.1002/admt.201700183
Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Acta Mater. 2008, 56, 2929.
doi: 10.1016/j.actamat.2008.02.030
Shi, Z.; Wu, X.; Zhang, H.; Chai, H.; Li, C. M.; Lu, Z.; Yu, L. J. Colloid Interface Sci. 2019, 534, 618.
doi: 10.1016/j.jcis.2018.09.069
Cai, Y.; Huang, W.; Dong, X. Chin. Sci. Bull. 2016, 62, 635 (in Chinese).
Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. Nat. Mater. 2012, 11, 795.
doi: 10.1038/nmat3380
Pang, Y.; Tian, H.; Tao, L.; Li, Y.; Wang, X.; Deng, N.; Yang, Y.; Ren, T. L. ACS Appl. Mater. Interfaces 2016, 8, 26458.
doi: 10.1021/acsami.6b08172
Li, J.; Orrego, S.; Pan, J.; He, P.; Kang, S. H. Nanoscale 2019, 11, 2779.
doi: 10.1039/C8NR09959F
Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. Adv. Mater. 2013, 25, 6692.
doi: 10.1002/adma.201303041
Wu, J.; Wang, H.; Su, Z.; Zhang, M.; Hu, X.; Wang, Y.; Wang, Z.; Zhong, B.; Zhou, W.; Liu, J.; Xing, S. G. ACS Appl. Mater. Interfaces 2017, 9, 38745.
doi: 10.1021/acsami.7b10316
Yang, X.; Wang, Y.; Sun, H.; Qing, X. Sens. Actuators, A 2019, 285, 67.
doi: 10.1016/j.sna.2018.10.041
Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Nat. Mater. 2017, 16, 834.
doi: 10.1038/nmat4904
Zou, B.; Chen, Y.; Liu, Y.; Xie, R.; Du, Q.; Zhang, T.; Shen, Y.; Zheng, B.; Li, S.; Wu, J.; Zhang, W.; Huang, W.; Huang, X.; Huo, F. Adv. Sci. 2019, 6, 1801283.
doi: 10.1002/advs.201801283
Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Mobius, M. E.; Young, R. J.; Coleman, J. N. Science 2016, 354, 1257.
doi: 10.1126/science.aag2879
Segev-Bar, M.; Haick, H. ACS Nano 2013, 7, 8366.
doi: 10.1021/nn402728g
Su, M.; Li, F.; Chen, S.; Huang, Z.; Qin, M.; Li, W.; Zhang, X.; Song, Y. Adv. Mater. 2016, 28, 1369.
doi: 10.1002/adma.201504759
Takei, K.; Yu, Z.; Zheng, M.; Ota, H.; Takahashi, T.; Javey, A. Proc. Natl. Acad. Sci. USA 2014, 111, 1703.
doi: 10.1073/pnas.1317920111
Xue, J.; Song, J.; Dong, Y.; Xu, L.; Li, J.; Zeng, H. Sci. Bull. 2017, 62, 143.
doi: 10.1016/j.scib.2016.11.009
Ho, M. D.; Ling, Y.; Yap, L. W.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W. Adv. Funct. Mater. 2017, 27, 1700845.
doi: 10.1002/adfm.201700845
Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. Nat. Commun. 2014, 5, 3132.
doi: 10.1038/ncomms4132
Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y.; Suo, Z.; Someya, T. Nat. Nanotechnol. 2016, 11, 472.
doi: 10.1038/nnano.2015.324
Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; Sekino, M.; Kawasaki, H.; Ebihara, T.; Amagai, M.; Someya, T. Nat. Nanotechnol. 2017, 12, 907.
doi: 10.1038/nnano.2017.125
Cai, L.; Song, L.; Luan, P.; Zhang, Q.; Zhang, N.; Gao, Q.; Zhao, D.; Zhang, X.; Tu, M.; Yang, F.; Zhou, W.; Fan, Q.; Luo, J.; Zhou, W.; Ajayan, P. M.; Xie, S. Sci. Rep. 2013, 3, 3048.
doi: 10.1038/srep03048
Song, Y.; Chen, H.; Chen, X.; Wu, H.; Guo, H.; Cheng, X.; Meng, B.; Zhang, H. Nano Energy 2018, 53, 189.
doi: 10.1016/j.nanoen.2018.08.041
Hodlur, R. M.; Rabinal, M. K. Compos. Sci. Technol. 2014, 90, 160.
doi: 10.1016/j.compscitech.2013.11.005
Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. ACS Nano 2017, 11, 8790.
doi: 10.1021/acsnano.7b02826
Lou, Z.; Chen, S.; Wang, L.; Shi, R.; Li, L.; Jiang, K.; Chen, D.; Shen, G. Nano Energy 2017, 38, 28.
doi: 10.1016/j.nanoen.2017.05.024
Tang, X.; Wu, C.; Gan, L.; Zhang, T.; Zhou, T.; Huang, J.; Wang, H.; Xie, C.; Zeng, D. Small 2019, 15, e1804559.
doi: 10.1002/smll.201804559
Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Adv. Mater. 2014, 26, 1336.
doi: 10.1002/adma.201304248
Engel, J.; Chen, J.; Liu, C. J. Micromech. Microeng. 2003, 13, 359.
doi: 10.1088/0960-1317/13/3/302
Yoon, S.-I.; Kim, Y.-J. J. Micromech. Microeng. 2010, 20, 105017.
doi: 10.1088/0960-1317/20/10/105017
Kilaru, R.; Celik-Butler, Z.; Butler, D. P.; Gonenli, I. E. J. Microelectromech. Syst. 2013, 22, 349.
doi: 10.1109/JMEMS.2012.2222867
Park, D. Y.; Joe, D. J.; Kim, D. H.; Park, H.; Han, J. H.; Jeong, C. K.; Park, H.; Park, J. G.; Joung, B.; Lee, K. J. Adv. Mater. 2017, 29, 1702308.
doi: 10.1002/adma.201702308
Dong, K.; Wu, Z.; Deng, J.; Wang, A. C.; Zou, H.; Chen, C.; Hu, D.; Gu, B.; Sun, B.; Wang, Z. L. Adv. Mater. 2018, 30, 1804944.
doi: 10.1002/adma.201804944
Zhao, S.; Zhu, R.; Fu, Y. ACS Appl. Mater. Interfaces 2019, 11, 4588.
doi: 10.1021/acsami.8b18639
Lee, H.-K.; Chung, J.; Chang, S.-I.; Yoon, E. J. Micromech. Microeng. 2011, 21, 035010.
doi: 10.1088/0960-1317/21/3/035010
Gerratt, A. P.; Michaud, H. O.; Lacour, S. P. Adv. Funct. Mater. 2015, 25, 2287.
doi: 10.1002/adfm.201404365
Wan, Y.; Qiu, Z.; Huang, J.; Yang, J.; Wang, Q.; Lu, P.; Yang, J.; Zhang, J.; Huang, S.; Wu, Z.; Guo, C. F. Small 2018, 14, e1801657.
doi: 10.1002/smll.201801657
Chen, T.; Wang, R.; Li, X. J. Transduc. Technol. 2019, 4, 528 (in Chinese).
doi: 10.3969/j.issn.1004-1699.2019.04.009
Joo, Y.; Byun, J.; Seong, N.; Ha, J.; Kim, H.; Kim, S.; Kim, T.; Im, H.; Kim, D.; Hong, Y. Nanoscale 2015, 7, 6208.
doi: 10.1039/C5NR00313J
Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Nat. Nanotechnol. 2011, 6, 788.
doi: 10.1038/nnano.2011.184
Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E.; Lee, T. Adv. Mater. 2015, 27, 2433.
doi: 10.1002/adma.201500009
Wang, J.; Jiu, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; He, P.; Suganuma, K. Nanoscale 2015, 7, 2926.
doi: 10.1039/C4NR06494A
Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D. M.; Haufe, F.; Wood, R. J.; Walsh, C. J. Adv. Mater. Technol. 2017, 2, 1700136.
doi: 10.1002/admt.201700136
Lee, J.-H.; Yoon, H.-J.; Kim, T. Y.; Gupta, M. K.; Lee, J. H.; Seung, W.; Ryu, H.; Kim, S.-W. Adv. Funct. Mater. 2015, 25, 3203.
doi: 10.1002/adfm.201500856
Wang, X.; Song, W. Z.; You, M. H.; Zhang, J.; Yu, M.; Fan, Z.; Ramakrishna, S.; Long, Y. Z. ACS Nano 2018, 12, 8588.
doi: 10.1021/acsnano.8b04244
Wu, W.; Wen, X.; Wang, Z. L. Science 2013, 340, 952.
doi: 10.1126/science.1234855
Lin, P.; Pan, C.; Wang, Z. L. Mater. Today Nano 2018, 4, 17.
doi: 10.1016/j.mtnano.2018.11.006
Akiyama, M.; Morofuji, Y.; Kamohara, T.; Nishikubo, K.; Tsubai, M.; Fukuda, O.; Ueno, N. J. Appl. Phys. 2006, 100, 114318.
doi: 10.1063/1.2401312
Kim, H. J.; Kim, Y. J. Mater. Design 2018, 151, 133.
doi: 10.1016/j.matdes.2018.04.048
Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J. B. ACS Nano 2017, 11, 4507.
doi: 10.1021/acsnano.6b08027
Fan, F.-R.; Tian, Z.-Q.; Wang, Z.-L. Nano Energy 2012, 1, 328.
doi: 10.1016/j.nanoen.2012.01.004
Yuan, Z.; Zhou, T.; Yin, Y.; Cao, R.; Li, C.; Wang, Z. L. ACS Nano 2017, 11, 8364.
doi: 10.1021/acsnano.7b03680
Nie, J.; Chen, X.; Wang, Z. L. Adv. Funct. Mater. 2018, 1806351.
Pu, X.; Hu, W.; Wang, Z. L. Small 2018, 14, 1702817.
doi: 10.1002/smll.201702817
Chen, H.; Song, Y.; Cheng, X.; Zhang, H. Nano Energy 2019, 56, 252.
doi: 10.1016/j.nanoen.2018.11.061
Wu, H.; Guo, H.; Su, Z.; Shi, M.; Chen, X.; Cheng, X.; Han, M.; Zhang, H. J. Mater. Chem. A 2018, 6, 20277.
doi: 10.1039/C8TA08276F
Zhao, S.; Zhu, R. Adv. Mater. Technol. 2019, 4, 1900414.
doi: 10.1002/admt.201900414
Fu, Y.; Zhao, S.; Zhu, R. IEEE Trans. Biomed. Eng. 2018, 66, 1412.
Fu, Y.; Zhao, S.; Wang, L.; Zhu, R. Adv. Healthcare Mater. 2019, 8, 1900633.
doi: 10.1002/adhm.201900633
Yeom, C.; Chen, K.; Kiriya, D.; Yu, Z.; Cho, G.; Javey, A. Adv. Mater. 2015, 27, 1561.
doi: 10.1002/adma.201404850
Wang, C.; Hwang, D.; Yu, Z.; Takei, K.; Park, J.; Chen, T.; Ma, B.; Javey, A. Nat. Mater. 2013, 12, 899.
doi: 10.1038/nmat3711
Xu, J.; Wang, S.; Wang, G.-J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W. F.; Rondeau-Gagné, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y.; Kim, Y.-H.; Yan, H.; Sinclair, R.; Zhou, D.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B.-H.; Chung, J. W.; Bao, Z. Science 2017, 355, 59.
doi: 10.1126/science.aah4496
Wang, Z.; Guo, S.; Li, H.; Wang, B.; Sun, Y.; Xu, Z.; Chen, X.; Wu, K.; Zhang, X.; Xing, F.; Li, L.; Hu, W. Adv. Mater. 2019, 31, e1805630.
Sun, Q.-J.; Li, T.; Wu, W.; Venkatesh, S.; Zhao, X.-H.; Xu, Z.-X.; Roy, V. A. L. ACS Appl. Electron. Mater. 2019, 1, 711.
doi: 10.1021/acsaelm.9b00081
Wang, S.; Xu, J.; Wang, W.; Wang, G. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S.; Feig, V. R.; Lopez, J.; Lei, T.; Kwon, S. K.; Kim, Y.; Foudeh, A. M.; Ehrlich, A.; Gasperini, A.; Yun, Y.; Murmann, B.; Tok, J. B.; Bao, Z. Nature 2018, 555, 83.
doi: 10.1038/nature25494
Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nat. Mater. 2010, 9, 821.
doi: 10.1038/nmat2835
Zang, Y.; Zhang, F.; Huang, D.; Gao, X.; Di, C. A.; Zhu, D. Nat. Commun. 2015, 6, 6269.
doi: 10.1038/ncomms7269
Chia, B. T.; Duo-Ru, C.; Hsin-Hung, L.; Yao-Joe, Y.; Wen-Pin, S.; Fu-Yu, C.; Kuang-Chao, F. In IEEE International Conference of Micro Electro Mechanical Systems (MEMS), Hyogo, Japan, 2007, p. 589.
Xu, B.; Akhtar, A.; Liu, Y.; Chen, H.; Yeo, W. H.; Park, S. I.; Boyce, B.; Kim, H.; Yu, J.; Lai, H. Y.; Jung, S.; Zhou, Y.; Kim, J.; Cho, S.; Huang, Y.; Bretl, T.; Rogers, J. A. Adv. Mater. 2016, 28, 4462.
doi: 10.1002/adma.201504155
Engel, J.; Chen, J.; Fan, Z.; Liu, C. Sens. Actuators, A 2005, 117, 50.
doi: 10.1016/j.sna.2004.05.037
Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y.; Yu, K. J.; Cheng, H.; Shi, M.; Bian, Z.; Liu, Z.; Kim, Y. S.; Yeo, W. H.; Park, J. S.; Song, J.; Li, Y.; Huang, Y.; Gorbach, A. M.; Rogers, J. A. Nat. Mater. 2013, 12, 938.
doi: 10.1038/nmat3755
Han, I. Y.; Kim, S. J. Sens. Actuators, A 2008, 141, 52.
doi: 10.1016/j.sna.2007.07.020
Yang, J.; Wei, D.; Tang, L.; Song, X.; Luo, W.; Chu, J.; Gao, T.; Shi, H.; Du, C. RSC Adv. 2015, 5, 25609.
doi: 10.1039/C5RA00871A
Shih, W. P.; Tsao, L. C.; Lee, C. W.; Cheng, M. Y.; Chang, C.; Yang, Y. J.; Fan, K. C. Sensors 2010, 10, 3597.
doi: 10.3390/s100403597
Yang, Y.; Lin, Z.-H.; Hou, T.; Zhang, F.; Wang, Z. L. Nano Res. 2012, 5, 888.
doi: 10.1007/s12274-012-0272-8
Agarwal, K.; Kaushik, V.; Varandani, D.; Dhar, A.; Mehta, B. R. J. Alloys Compd. 2016, 681, 394.
doi: 10.1016/j.jallcom.2016.04.161
Vieira, E. M. F.; Figueira, J.; Pires, A. L.; Grilo, J.; Silva, M. F.; Pereira, A. M.; Goncalves, L. M. J. Alloys Compd. 2019, 774, 1102.
doi: 10.1016/j.jallcom.2018.09.324
Fourmont, P.; Gerlein, L. F.; Fortier, F. X.; Cloutier, S. G.; Nechache, R. ACS Appl. Mater. Interfaces 2018, 10, 10194.
doi: 10.1021/acsami.7b18852
Shi, Y.; Wang, Y.; Deng, Y.; Gao, H.; Lin, Z.; Zhu, W.; Ye, H. Energy Convers. Manage. 2014, 80, 110.
doi: 10.1016/j.enconman.2014.01.010
Zeng, X.; Yan, C.; Ren, L.; Zhang, T.; Zhou, F.; Liang, X.; Wang, N.; Sun, R.; Xu, J.-B.; Wong, C.-P. Adv. Electron. Mater. 2019, 5, 1800612.
doi: 10.1002/aelm.201800612
Yu, X.; Chen, X.; Yu, X.; Chen, X.; Ding, X.; Zhao, X. IEEE Trans. Electron Devices 2019, 66, 1911.
doi: 10.1109/TED.2019.2897142
Li, T.; Li, L.; Sun, H.; Xu, Y.; Wang, X.; Luo, H.; Liu, Z.; Zhang, T. Adv. Sci. 2017, 4, 1600404.
doi: 10.1002/advs.201600404
Zhu, P.; Liu, Y.; Fang, Z.; Kuang, Y.; Zhang, Y.; Peng, C.; Chen, G. Langmuir 2019, 35, 4834.
doi: 10.1021/acs.langmuir.8b04259
Wu, J.; Sun, Y. M.; Wu, Z.; Li, X.; Wang, N.; Tao, K.; Wang, G. P. ACS Appl. Mater. Interfaces 2019, 11, 4242.
doi: 10.1021/acsami.8b18599
Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Nanomaterials (Basel) 2019, 9, 422.
doi: 10.3390/nano9030422
Pang, Y.; Jian, J.; Tu, T.; Yang, Z.; Ling, J.; Li, Y.; Wang, X.; Qiao, Y.; Tian, H.; Yang, Y.; Ren, T. L. Biosens. Bioelectron. 2018, 116, 123.
doi: 10.1016/j.bios.2018.05.038
Choi, S. J.; Yu, H.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Small 2018, 14, 1703934.
doi: 10.1002/smll.201703934
Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N.-E. Nano Res. 2017, 10, 2021.
doi: 10.1007/s12274-016-1389-y
Jiang, P.; Zhao, S.; Zhu, R. Sensors 2015, 15, 31738.
doi: 10.3390/s151229881
Zhao, S.; Zhu, R. Adv. Mater. Technol. 2018, 3, 1800056.
doi: 10.1002/admt.201800056
Dinh, T.; Phan, H.-P.; Nguyen, T.-K.; Qamar, A.; Woodfield, P.; Zhu, Y.; Nguyen, N.-T.; Viet Dao, D. J. Phys. D: Appl. Phys. 2017, 50, 215401.
doi: 10.1088/1361-6463/aa6cd6
Dieffenderfer, J.; Goodell, H.; Mills, S.; McKnight, M.; Yao, S.; Lin, F.; Beppler, E.; Bent, B.; Lee, B.; Misra, V.; Zhu, Y.; Oralkan, O.; Strohmaier, J.; Muth, J.; Peden, D.; Bozkurt, A. IEEE J. Biomed. Health Inform. 2016, 20, 1251.
doi: 10.1109/JBHI.2016.2573286
Cao, Z.; Zhu, R.; Que, R. Y. IEEE Trans. Biomed. Eng. 2012, 59, 3110.
doi: 10.1109/TBME.2012.2211354
Que, R.; Zhu, R. Sensors 2013, 14, 564.
doi: 10.3390/s140100564
Li, G.; Zhao, S.; Zhu, R. IEEE Sens. J. 2019, 19, 297.
doi: 10.1109/JSEN.2018.2874809
Que, R.-Y.; Zhu, R. IEEE Sens. J. 2015, 15, 1931.
doi: 10.1109/JSEN.2014.2367017
Nguyen, N. Flow Meas. Instrum. 1997, 8, 7.
doi: 10.1016/S0955-5986(97)00019-8
Kuo, J. T.; Yu, L.; Meng, E. Micromachines 2012, 3, 550.
doi: 10.3390/mi3030550
Liu, P.; Zhu, R.; Que, R. Sensors 2009, 9, 9533.
doi: 10.3390/s91209533
Bruun, H. H., Hot-Wire Anemometry: Principles and Signal Analysis, Oxford University Press, New York, USA, 1995.
Mailly, F.; Giani, A.; Bonnot, R.; Temple-Boyer, P.; Pascal-Delannoy, F.; Foucaran, A.; Boyer, A. Sens. Actuators, A 2001, 94, 32.
doi: 10.1016/S0924-4247(01)00668-9
Kim, S.; Nam, T.; Park, S. Sens. Actuators, A 2004, 114, 312.
doi: 10.1016/j.sna.2003.12.019
Kim, T. H.; Kim, D.-K.; Kim, S. J. Int. J. Heat Mass Transfer 2009, 52, 2140.
doi: 10.1016/j.ijheatmasstransfer.2008.10.006
Jiang, P.; Zhu, R.; Dong, X.; Chang, Y. Sleep Breath. 2017, 22, 123.
Zhang, J.; Liu, S.; Zhu, R. IEEE Access 2019, doi: 10.1109/ACCESS.2019.2921978.
Liu, S.; Zhang, J.; Zhu, R. IEEE Trans. Biomed. Eng. 2019, doi: 10.1109/TBME.2019.2924689.
Dinh, T.; Phan, H.-P.; Nguyen, T.-K.; Qamar, A.; Foisal, A. R. M.; Nguyen Viet, T.; Tran, C.-D.; Zhu, Y.; Nguyen, N.-T.; Dao, D. V. J. Mater. Chem. C 2016, 4, 10061.
doi: 10.1039/C6TC02708C
Zhao, D.; Qian, X.; Gu, X.; Jajja, S. A.; Yang, R. J. Electron. Packaging 2016, 138, 040802.
doi: 10.1115/1.4034605
Pope, A.; Zawilski, B.; Tritt, T. Cryogenics 2001, 41, 725.
doi: 10.1016/S0011-2275(01)00140-0
Zawilski, B. M.; Littleton, R. T.; Tritt, T. M. Rev. Sci. Instrum. 2001, 72, 1770.
doi: 10.1063/1.1347980
Zhu, J.; Tang, D.; Wang, W.; Liu, J.; Holub, K. W.; Yang, R. J. Appl. Phys. 2010, 108, 094315.
doi: 10.1063/1.3504213
Gustafsson, S. E. Rev. Sci. Instrum. 1991, 62, 797.
doi: 10.1063/1.1142087
Assael, M. J.; Antoniadis, K. D.; Wakeham, W. A. Int. J. Thermophys. 2010, 31, 1051.
doi: 10.1007/s10765-010-0814-9
Lee, J.; Lee, H.; Baik, Y.-J.; Koo, J. Int. J. Heat Mass Transfer 2015, 89, 116.
doi: 10.1016/j.ijheatmasstransfer.2015.05.064
Ruoho, M.; Valset, K.; Finstad, T.; Tittonen, I. Nanotechnology 2015, 26, 195706.
doi: 10.1088/0957-4484/26/19/195706
Mishra, V.; Hardin, C. L.; Garay, J. E.; Dames, C. Rev. Sci. Instrum. 2015, 86, 054902.
doi: 10.1063/1.4918800
Tian, L.; Li, Y.; Webb, R. C.; Krishnan, S.; Bian, Z.; Song, J.; Ning, X.; Crawford, K.; Kurniawan, J.; Bonifas, A.; Ma, J.; Liu, Y.; Xie, X.; Chen, J.; Liu, Y.; Shi, Z.; Wu, T.; Ning, R.; Li, D.; Sinha, S.; Cahill, D. G.; Huang, Y.; Rogers, J. A. Adv. Funct. Mater. 2017, 27, 1701282.
doi: 10.1002/adfm.201701282
Russell, R. A.; Paoloni, F. J. IEEE Trans. Instrum. Meas. 1985, 34, 458.
Wade, J.; Bhattacharjee, T.; Williams, R. D.; Kemp, C. C. Robot. Auton. Syst. 2017, 96, 1.
doi: 10.1016/j.robot.2017.06.008
Siegel, D.; Garabieta, I.; Hollerbach, J. In IEEE International Conference of Robotics and Automation (ICRA), New York, USA, 1986, p. 1286.
Lin, C. H.; Erickson, T. W.; Fishel, J. A.; Wettels, N.; Loeb, G. E. In IEEE International Conference of Robotics and Biomimetics (ROBIO), Guilin, China, 2009, p. 129.
Kerr, E.; McGinnity, T. M.; Coleman, S. In IEEE International Conference of Robotics and Biomimetics (ROBIO), Shenzhen, China, 2013, p. 1048.
Bhattacharjee, T.; Wade, J.; Kemp, C. C. In Proceedings of Robotics: Science and Systems, Rome, Italy, 2015.
Eguíluz, A. G.; Raño, I.; Coleman, S. A.; McGinnity, T. M. In IEEE International Conference of Intelligent Robots and Systems (IROS), Daejeon, South Korea, 2016, p. 4912.
Kerr, E.; McGinnity, T. M.; Coleman, S. Expert Syst. Appl. 2018, 94, 94.
doi: 10.1016/j.eswa.2017.10.045
Bhattacharjee, T.; Clever, H. M.; Wade, J.; Kemp, C. IEEE Robot. Autom. Lett. 2018, 3, 2523.
doi: 10.1109/LRA.2018.2810956
Xu, D.; Loeb, G. E.; Fishel, J. A. In IEEE International Conference of Robotics and Automation (ICRA), New Jersey, USA, 2013, p. 3056.
Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S. H.; Kang, Z.; Huang, Y.; Rogers, J. A. Adv. Mater. 2013, 25, 2773.
doi: 10.1002/adma.201204426
Kim, M.-g.; Alrowais, H.; Brand, O. Adv. Electron. Mater. 2018, 4, 1700434.
doi: 10.1002/aelm.201700434
Chung, H. U.; Kim, B. H.; Lee, J. Y.; Lee, J.; Xie, Z.; Ibler, E. M.; Lee, K.; Banks, A.; Jeong, J. Y.; Kim, J.; Ogle, C.; Grande, D.; Yu, Y.; Jang, H.; Assem, P.; Ryu, D.; Kwak, J. W.; Namkoong, M.; Park, J. B.; Lee, Y.; Kim, D. H.; Ryu, A.; Jeong, J.; You, K.; Ji, B.; Liu, Z.; Huo, Q.; Feng, X.; Deng, Y.; Xu, Y.; Jang, K.-I.; Kim, J.; Zhang, Y.; Ghaffari, R.; Rand, C. M.; Schau, M.; Hamvas, A.; Weese-Mayer, D. E.; Huang, Y.; Lee, S. M.; Lee, C. H.; Shanbhag, N. R.; Paller, A. S.; Xu, S.; Rogers, J. A. Science 2019, 363, eaau0780.
doi: 10.1126/science.aau0780
Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z. L. Nat. Commun. 2018, 9, 244.
doi: 10.1038/s41467-017-02685-9
Kabiri Ameri, S.; Ho, R.; Jang, H.; Tao, L.; Wang, Y.; Wang, L.; Schnyer, D. M.; Akinwande, D.; Lu, N. ACS Nano 2017, 11, 7634.
doi: 10.1021/acsnano.7b02182
Wang, Y.; Qiu, Y.; Ameri, S. K.; Jang, H.; Dai, Z.; Huang, Y.; Lu, N. npj Flex. Electron. 2018, 2, 6.
doi: 10.1038/s41528-017-0019-4
Jang, K. I.; Li, K.; Chung, H. U.; Xu, S.; Jung, H. N.; Yang, Y.; Kwak, J. W.; Jung, H. H.; Song, J.; Yang, C.; Wang, A.; Liu, Z.; Lee, J. Y.; Kim, B. H.; Kim, J. H.; Lee, J.; Yu, Y.; Kim, B. J.; Jang, H.; Yu, K. J.; Kim, J.; Lee, J. W.; Jeong, J. W.; Song, Y. M.; Huang, Y.; Zhang, Y.; Rogers, J. A. Nat. Commun. 2017, 8, 15894.
doi: 10.1038/ncomms15894
Lee, H.; Song, C.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.; Hyeon, T.; Kim, D.-H. Sci. Adv. 2017, 3, e1601314.
Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; Rogers, J. A. Sci. Transl. Med. 2016, 8, 366ra165.
Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D.; Javey, A. Nature 2016, 529, 509.
doi: 10.1038/nature16521
Chen, Y.; Lu, S.; Zhang, S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B.; Wang, X.; Feng, X. Sci. Adv. 2017, 3, e1701629.
doi: 10.1126/sciadv.1701629
Lipani, L.; Dupont, B. G. R.; Doungmene, F.; Marken, F.; Tyrrell, R. M.; Guy, R. H.; Ilie, A. Nat. Nanotechnol. 2018, 13, 504.
doi: 10.1038/s41565-018-0112-4
Kim, S. Y.; Park, S.; Park, H. W.; Park, D. H.; Jeong, Y.; Kim, D. H. Adv. Mater. 2015, 27, 4178.
doi: 10.1002/adma.201501408
Tien, N. T.; Jeon, S.; Kim, D. I.; Trung, T. Q.; Jang, M.; Hwang, B. U.; Byun, K. E.; Bae, J.; Lee, E.; Tok, J. B.; Bao, Z.; Lee, N. E.; Park, J. J. Adv. Mater. 2014, 26, 796.
doi: 10.1002/adma.201302869
Kim, D. I.; Trung, T. Q.; Hwang, B. U.; Kim, J. S.; Jeon, S.; Bae, J.; Park, J. J.; Lee, N. E. Sci. Rep. 2015, 5, 12705.
doi: 10.1038/srep12705
Lee, J. S.; Shin, K. Y.; Cheong, O. J.; Kim, J. H.; Jang, J. Sci. Rep. 2015, 5, 7887.
doi: 10.1038/srep07887
Hou, C.; Wang, H.; Zhang, Q.; Li, Y.; Zhu, M. Adv. Mater. 2014, 26, 5018.
doi: 10.1002/adma.201401367
Ai, Y.; Lou, Z.; Chen, S.; Chen, D.; Wang, Z. M.; Jiang, K.; Shen, G. Nano Energy 2017, 35, 121.
doi: 10.1016/j.nanoen.2017.03.039
Zhang, F.; Zang, Y.; Huang, D.; Di, C. A.; Zhu, D. Nat. Commun. 2015, 6, 8356.
doi: 10.1038/ncomms9356
Ho, D. H.; Sun, Q.; Kim, S. Y.; Han, J. T.; Kim do, H.; Cho, J. H. Adv. Mater. 2016, 28, 2601.
doi: 10.1002/adma.201505739
Zhao, S.; Zhu, R. Adv. Mater. 2017, 29, 1606151.
doi: 10.1002/adma.201606151
Zhao, S.; Jiang, P.; Zhu, R.; Que, R. In IEEE Sensors Conference, Orlando, USA, 2016, p. 1.
Zhao, S.; Zhu, R. In International Conference of Flexible and Printed Electronics (ICFPE), Beijing, China, 2014, p. 89.
Tee, B. C.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W. G.; Wang, H.; Mei, P.; Chou, H. H.; Cui, B.; Deisseroth, K.; Ng, T. N.; Bao, Z. Science 2015, 350, 313.
doi: 10.1126/science.aaa9306
Kim, Y.; Chortos, A.; Xu, W.; Liu, Y.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C.; Lee, Y.; Niu, S.; Liu, J.; Pfattner, R.; Bao, Z.; Lee, T.-W. Science 2018, 360, 998.
doi: 10.1126/science.aao0098
Nana Wang , Gaosheng Zhang , Huosheng Li , Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010
Hongwei Ma , Fang Zhang , Hui Ai , Niu Zhang , Shaochun Peng , Hui Li . Integrated Crystallographic Teaching with X-ray,TEM and STM. University Chemistry, 2024, 39(3): 5-17. doi: 10.3866/PKU.DXHX202308107
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Yuping Wei , Yiting Wang , Jialiang Jiang , Jinxuan Deng , Hong Zhang , Xiaofei Ma , Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007
Shengbiao Zheng , Liang Li , Nini Zhang , Ruimin Bao , Ruizhang Hu , Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096
Cunming Yu , Dongliang Tian , Jing Chen , Qinglin Yang , Kesong Liu , Lei Jiang . Chemistry “101 Program” Synthetic Chemistry Experiment Course Construction: Synthesis and Properties of Bioinspired Superhydrophobic Functional Materials. University Chemistry, 2024, 39(10): 101-106. doi: 10.12461/PKU.DXHX202408008
Xiyuan Su , Zhenlin Hu , Ye Fan , Xianyuan Liu , Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059
Limin Shao , Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Yiming Lu , Xiang Xie , Xiaoqing Qiu , Yang Liu , Xinyuan Cheng . The New Year’s Eve of the Aviation Brake Material Family. University Chemistry, 2024, 39(9): 203-207. doi: 10.12461/PKU.DXHX202403061
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
Qin Hou , Jiayi Hou , Aiju Shi , Xingliang Xu , Yuanhong Zhang , Yijing Li , Juying Hou , Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
Kexin Dong , Chuqi Shen , Ruyu Yan , Yanping Liu , Chunqiang Zhuang , Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013
(a) Schematic structure of flexible pressure sensor based on a PANI-HNSCF[41]. (b) Flexible pressure sensors based on stretchable silicon nanoribbon with and without cavities[8]. (c) Capacitive flexible pressure sensors based on microstructured PDMS films[13]. (d) Flexible piezoelectric sensors based on PZT and used for arterial pulse monitoring[47]. (e) Skin-inspired triboelectric nanogenerator based on continuous, planar and "chain-link" fence-shaped interlaced conductive network and used for sensing mechanical stimuli and harvesting biomechanical energy[48]. (f) Flexible pressure sensor based on piezothermic transduction. Porous materials and serial-model materials serve as the functional materials that transfer pressure to thermal condutivity[49]
(a) Flexible temperature sensor based on graphene nanowalls[88]. (b) High performance flexible thermoelectric sensor based on silver telluride nanowire[95]. (c) Flexible humidity sensor based on porous ionic membrane[97]. (d) Flexible flow sensor based on hot-film and used for smart sensing strip for noninvasively monitoring respiratory[104]. (e) Ultrathin conformal gold-based devices for thermal characterization of human skin[86]. (f) A smart artificial finger with multisensations of matter, temperature and proximity[105]
(a) Multifunctional electronics with physical properties matched to the epidermis[1]. (b) Wireless multifunctional epidermal electronic systems for neonatal intensive care[145]. (c) Multifunctional sensing matrix networks with skin-inspired highly stretchable and conformable architecture[146]
(a) Temperature-pressure dual-parameter sensors using microstructure- frame-supported organic thermoelectric materials[161]. (b) Multimodal all-graphene electronic skin with capabilities of detecting pressure, temperature and humidity[162]
(a) Schematic of the multi-sensing mechanism. (b) Multifunctional electronic skin based on thermosensation with capabilities of sensing pressure, temperature, matter and flow[163]