Citation: Zhao Shuai, Zhu Rong. Flexible Electronic Skin with Multisensory Integration[J]. Acta Chimica Sinica, ;2019, 77(12): 1250-1262. doi: 10.6023/A19060227 shu

Flexible Electronic Skin with Multisensory Integration

  • Corresponding author: Zhu Rong, zr_gloria@mail.tsinghua.edu.cn
  • Received Date: 23 June 2019
    Available Online: 4 December 2019

    Fund Project: Beijing Natural Science Foundation 3191001Project supported by the National Natural Science Foundation of China (No. 51735007) and Beijing Natural Science Foundation (No. 3191001)the National Natural Science Foundation of China 51735007

Figures(6)

  • Flexible electronic skins (E-skins) with human-like multiple sensing capabilities of perceiving various stimuli, have attracted more and more attentions for their wide applications in wearable electronics, health monitoring, humanoid robotics and smart prosthesis. However, to meet the rigorous requirements for these complicated applications, challenges still exist in multifunctional integration, high performance, simple structure, low-cost fabrication and easy signal processing. This review focuses on the significant sensing capabilities that are necessarily required in E-skins, including perceiving stimuli of pressure, temperature, humidity, flow and materials. Various mechanisms are utilized in multiple kinds of sensors in current study, such as piezoresistivity, thermoelectricity, electrical impedance, convective heat transfer, etc. Multisensory integration is the basic characteristics of E-skins that various stimuli are perceived simultaneously. There are mainly three mechanisms applied in multisensory integration, that is, direct-integration method, functional-materials based method and uniform sensing method. The advantages and disadvantages of each method are analyzed. Finally, the challenges and future development on multisensory integration of E-skins are summarized.
  • 加载中
    1. [1]

      Kim, D. H.; Lu, N.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S.; Wu, J.; Won, S. M.; Tao, H.; Islam, A.; Yu, K. J.; Kim, T. I.; Chowdhury, R.; Ying, M.; Xu, L.; Li, M.; Chung, H. J.; Keum, H.; McCormick, M.; Liu, P.; Zhang, Y. W.; Omenetto, F. G.; Huang, Y.; Coleman, T.; Rogers, J. A. Science 2011, 333, 838.  doi: 10.1126/science.1206157

    2. [2]

      Chortos, A.; Liu, J.; Bao, Z. Nat. Mater. 2016, 15, 937.  doi: 10.1038/nmat4671

    3. [3]

      Kaltenbrunner, M.; Sekitani, T.; Reeder, J.; Yokota, T.; Kuribara, K.; Tokuhara, T.; Drack, M.; Schwodiauer, R.; Graz, I.; Bauer-Gogonea, S.; Bauer, S.; Someya, T. Nature 2013, 499, 458.  doi: 10.1038/nature12314

    4. [4]

      Wang, X.; Dong, L.; Zhang, H.; Yu, R.; Pan, C.; Wang, Z. L. Adv. Sci. 2015, 2, 1500169.  doi: 10.1002/advs.201500169

    5. [5]

      Xu, K.; Lu, Y.; Takei, K. Adv. Mater. Technol. 2019, 4, 1800628.  doi: 10.1002/admt.201800628

    6. [6]

      Kim, J.; Campbell, A. S.; de Avila, B. E.; Wang, J. Nat. Biotechnol. 2019, 37, 389.  doi: 10.1038/s41587-019-0045-y

    7. [7]

      Lai, Y. C.; Deng, J.; Liu, R.; Hsiao, Y. C.; Zhang, S. L.; Peng, W.; Wu, H. M.; Wang, X.; Wang, Z. L. Adv. Mater. 2018, 30, 1801114.  doi: 10.1002/adma.201801114

    8. [8]

      Kim, J.; Lee, M.; Shim, H. J.; Ghaffari, R.; Cho, H. R.; Son, D.; Jung, Y. H.; Soh, M.; Choi, C.; Jung, S.; Chu, K.; Jeon, D.; Lee, S. T.; Kim, J. H.; Choi, S. H.; Hyeon, T.; Kim, D. H. Nat. Commun. 2014, 5, 5747.  doi: 10.1038/ncomms6747

    9. [9]

      Qian, X.; Su, M.; Li, F.; Song, Y. Acta Chim. Sinica 2016, 74, 565 (in Chinese).  doi: 10.3866/PKU.WHXB201511301
       

    10. [10]

      Johansson, R. S.; Flanagan, J. R. Nat. Rev. Neurosci. 2009, 10, 345.

    11. [11]

      Park, J.; Kim, M.; Lee, Y.; Lee, H. S.; Ko, H. Sci. Adv. 2015, 1, e1500661.  doi: 10.1126/sciadv.1500661

    12. [12]

      Wang, Q.; Jian, M.; Wang, C.; Zhang, Y. Adv. Funct. Mater. 2017, 27, 1605657.  doi: 10.1002/adfm.201605657

    13. [13]

      Mannsfeld, S. C.; Tee, B. C.; Stoltenberg, R. M.; Chen, C. V.; Barman, S.; Muir, B. V.; Sokolov, A. N.; Reese, C.; Bao, Z. Nat. Mater. 2010, 9, 859.  doi: 10.1038/nmat2834

    14. [14]

      Chen, X.; Shao, J.; An, N.; Li, X.; Tian, H.; Xu, C.; Ding, Y. J. Mater. Chem. C 2015, 3, 11806.  doi: 10.1039/C5TC02173A

    15. [15]

      Wang, X.; Zhang, H.; Dong, L.; Han, X.; Du, W.; Zhai, J.; Pan, C.; Wang, Z. L. Adv. Mater. 2016, 28, 2896.  doi: 10.1002/adma.201503407

    16. [16]

      Zhao, S.; Zhu, R. Adv. Mater. Technol. 2017, 2, 1700183.  doi: 10.1002/admt.201700183

    17. [17]

      Hu, N.; Karube, Y.; Yan, C.; Masuda, Z.; Fukunaga, H. Acta Mater. 2008, 56, 2929.  doi: 10.1016/j.actamat.2008.02.030

    18. [18]

      Shi, Z.; Wu, X.; Zhang, H.; Chai, H.; Li, C. M.; Lu, Z.; Yu, L. J. Colloid Interface Sci. 2019, 534, 618.  doi: 10.1016/j.jcis.2018.09.069

    19. [19]

      Cai, Y.; Huang, W.; Dong, X. Chin. Sci. Bull. 2016, 62, 635 (in Chinese).

    20. [20]

      Pang, C.; Lee, G. Y.; Kim, T. I.; Kim, S. M.; Kim, H. N.; Ahn, S. H.; Suh, K. Y. Nat. Mater. 2012, 11, 795.  doi: 10.1038/nmat3380

    21. [21]

      Pang, Y.; Tian, H.; Tao, L.; Li, Y.; Wang, X.; Deng, N.; Yang, Y.; Ren, T. L. ACS Appl. Mater. Interfaces 2016, 8, 26458.  doi: 10.1021/acsami.6b08172

    22. [22]

      Li, J.; Orrego, S.; Pan, J.; He, P.; Kang, S. H. Nanoscale 2019, 11, 2779.  doi: 10.1039/C8NR09959F

    23. [23]

      Yao, H. B.; Ge, J.; Wang, C. F.; Wang, X.; Hu, W.; Zheng, Z. J.; Ni, Y.; Yu, S. H. Adv. Mater. 2013, 25, 6692.  doi: 10.1002/adma.201303041

    24. [24]

      Wu, J.; Wang, H.; Su, Z.; Zhang, M.; Hu, X.; Wang, Y.; Wang, Z.; Zhong, B.; Zhou, W.; Liu, J.; Xing, S. G. ACS Appl. Mater. Interfaces 2017, 9, 38745.  doi: 10.1021/acsami.7b10316

    25. [25]

      Yang, X.; Wang, Y.; Sun, H.; Qing, X. Sens. Actuators, A 2019, 285, 67.  doi: 10.1016/j.sna.2018.10.041

    26. [26]

      Matsuhisa, N.; Inoue, D.; Zalar, P.; Jin, H.; Matsuba, Y.; Itoh, A.; Yokota, T.; Hashizume, D.; Someya, T. Nat. Mater. 2017, 16, 834.  doi: 10.1038/nmat4904

    27. [27]

      Zou, B.; Chen, Y.; Liu, Y.; Xie, R.; Du, Q.; Zhang, T.; Shen, Y.; Zheng, B.; Li, S.; Wu, J.; Zhang, W.; Huang, W.; Huang, X.; Huo, F. Adv. Sci. 2019, 6, 1801283.  doi: 10.1002/advs.201801283

    28. [28]

      Boland, C. S.; Khan, U.; Ryan, G.; Barwich, S.; Charifou, R.; Harvey, A.; Backes, C.; Li, Z.; Ferreira, M. S.; Mobius, M. E.; Young, R. J.; Coleman, J. N. Science 2016, 354, 1257.  doi: 10.1126/science.aag2879

    29. [29]

      Segev-Bar, M.; Haick, H. ACS Nano 2013, 7, 8366.  doi: 10.1021/nn402728g

    30. [30]

      Su, M.; Li, F.; Chen, S.; Huang, Z.; Qin, M.; Li, W.; Zhang, X.; Song, Y. Adv. Mater. 2016, 28, 1369.  doi: 10.1002/adma.201504759

    31. [31]

      Takei, K.; Yu, Z.; Zheng, M.; Ota, H.; Takahashi, T.; Javey, A. Proc. Natl. Acad. Sci. USA 2014, 111, 1703.  doi: 10.1073/pnas.1317920111

    32. [32]

      Xue, J.; Song, J.; Dong, Y.; Xu, L.; Li, J.; Zeng, H. Sci. Bull. 2017, 62, 143.  doi: 10.1016/j.scib.2016.11.009

    33. [33]

      Ho, M. D.; Ling, Y.; Yap, L. W.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W. Adv. Funct. Mater. 2017, 27, 1700845.  doi: 10.1002/adfm.201700845

    34. [34]

      Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. Nat. Commun. 2014, 5, 3132.  doi: 10.1038/ncomms4132

    35. [35]

      Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y.; Suo, Z.; Someya, T. Nat. Nanotechnol. 2016, 11, 472.  doi: 10.1038/nnano.2015.324

    36. [36]

      Miyamoto, A.; Lee, S.; Cooray, N. F.; Lee, S.; Mori, M.; Matsuhisa, N.; Jin, H.; Yoda, L.; Yokota, T.; Itoh, A.; Sekino, M.; Kawasaki, H.; Ebihara, T.; Amagai, M.; Someya, T. Nat. Nanotechnol. 2017, 12, 907.  doi: 10.1038/nnano.2017.125

    37. [37]

      Cai, L.; Song, L.; Luan, P.; Zhang, Q.; Zhang, N.; Gao, Q.; Zhao, D.; Zhang, X.; Tu, M.; Yang, F.; Zhou, W.; Fan, Q.; Luo, J.; Zhou, W.; Ajayan, P. M.; Xie, S. Sci. Rep. 2013, 3, 3048.  doi: 10.1038/srep03048

    38. [38]

      Song, Y.; Chen, H.; Chen, X.; Wu, H.; Guo, H.; Cheng, X.; Meng, B.; Zhang, H. Nano Energy 2018, 53, 189.  doi: 10.1016/j.nanoen.2018.08.041

    39. [39]

      Hodlur, R. M.; Rabinal, M. K. Compos. Sci. Technol. 2014, 90, 160.  doi: 10.1016/j.compscitech.2013.11.005

    40. [40]

      Tao, L. Q.; Zhang, K. N.; Tian, H.; Liu, Y.; Wang, D. Y.; Chen, Y. Q.; Yang, Y.; Ren, T. L. ACS Nano 2017, 11, 8790.  doi: 10.1021/acsnano.7b02826

    41. [41]

      Lou, Z.; Chen, S.; Wang, L.; Shi, R.; Li, L.; Jiang, K.; Chen, D.; Shen, G. Nano Energy 2017, 38, 28.  doi: 10.1016/j.nanoen.2017.05.024

    42. [42]

      Tang, X.; Wu, C.; Gan, L.; Zhang, T.; Zhou, T.; Huang, J.; Wang, H.; Xie, C.; Zeng, D. Small 2019, 15, e1804559.  doi: 10.1002/smll.201804559

    43. [43]

      Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Adv. Mater. 2014, 26, 1336.  doi: 10.1002/adma.201304248

    44. [44]

      Engel, J.; Chen, J.; Liu, C. J. Micromech. Microeng. 2003, 13, 359.  doi: 10.1088/0960-1317/13/3/302

    45. [45]

      Yoon, S.-I.; Kim, Y.-J. J. Micromech. Microeng. 2010, 20, 105017.  doi: 10.1088/0960-1317/20/10/105017

    46. [46]

      Kilaru, R.; Celik-Butler, Z.; Butler, D. P.; Gonenli, I. E. J. Microelectromech. Syst. 2013, 22, 349.  doi: 10.1109/JMEMS.2012.2222867

    47. [47]

      Park, D. Y.; Joe, D. J.; Kim, D. H.; Park, H.; Han, J. H.; Jeong, C. K.; Park, H.; Park, J. G.; Joung, B.; Lee, K. J. Adv. Mater. 2017, 29, 1702308.  doi: 10.1002/adma.201702308

    48. [48]

      Dong, K.; Wu, Z.; Deng, J.; Wang, A. C.; Zou, H.; Chen, C.; Hu, D.; Gu, B.; Sun, B.; Wang, Z. L. Adv. Mater. 2018, 30, 1804944.  doi: 10.1002/adma.201804944

    49. [49]

      Zhao, S.; Zhu, R.; Fu, Y. ACS Appl. Mater. Interfaces 2019, 11, 4588.  doi: 10.1021/acsami.8b18639

    50. [50]

      Lee, H.-K.; Chung, J.; Chang, S.-I.; Yoon, E. J. Micromech. Microeng. 2011, 21, 035010.  doi: 10.1088/0960-1317/21/3/035010

    51. [51]

      Gerratt, A. P.; Michaud, H. O.; Lacour, S. P. Adv. Funct. Mater. 2015, 25, 2287.  doi: 10.1002/adfm.201404365

    52. [52]

      Wan, Y.; Qiu, Z.; Huang, J.; Yang, J.; Wang, Q.; Lu, P.; Yang, J.; Zhang, J.; Huang, S.; Wu, Z.; Guo, C. F. Small 2018, 14, e1801657.  doi: 10.1002/smll.201801657

    53. [53]

      Chen, T.; Wang, R.; Li, X. J. Transduc. Technol. 2019, 4, 528 (in Chinese).  doi: 10.3969/j.issn.1004-1699.2019.04.009

    54. [54]

      Joo, Y.; Byun, J.; Seong, N.; Ha, J.; Kim, H.; Kim, S.; Kim, T.; Im, H.; Kim, D.; Hong, Y. Nanoscale 2015, 7, 6208.  doi: 10.1039/C5NR00313J

    55. [55]

      Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. Nat. Nanotechnol. 2011, 6, 788.  doi: 10.1038/nnano.2011.184

    56. [56]

      Lee, J.; Kwon, H.; Seo, J.; Shin, S.; Koo, J. H.; Pang, C.; Son, S.; Kim, J. H.; Jang, Y. H.; Kim, D. E.; Lee, T. Adv. Mater. 2015, 27, 2433.  doi: 10.1002/adma.201500009

    57. [57]

      Wang, J.; Jiu, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; He, P.; Suganuma, K. Nanoscale 2015, 7, 2926.  doi: 10.1039/C4NR06494A

    58. [58]

      Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D. M.; Haufe, F.; Wood, R. J.; Walsh, C. J. Adv. Mater. Technol. 2017, 2, 1700136.  doi: 10.1002/admt.201700136

    59. [59]

      Lee, J.-H.; Yoon, H.-J.; Kim, T. Y.; Gupta, M. K.; Lee, J. H.; Seung, W.; Ryu, H.; Kim, S.-W. Adv. Funct. Mater. 2015, 25, 3203.  doi: 10.1002/adfm.201500856

    60. [60]

      Wang, X.; Song, W. Z.; You, M. H.; Zhang, J.; Yu, M.; Fan, Z.; Ramakrishna, S.; Long, Y. Z. ACS Nano 2018, 12, 8588.  doi: 10.1021/acsnano.8b04244

    61. [61]

      Wu, W.; Wen, X.; Wang, Z. L. Science 2013, 340, 952.  doi: 10.1126/science.1234855

    62. [62]

      Lin, P.; Pan, C.; Wang, Z. L. Mater. Today Nano 2018, 4, 17.  doi: 10.1016/j.mtnano.2018.11.006

    63. [63]

      Akiyama, M.; Morofuji, Y.; Kamohara, T.; Nishikubo, K.; Tsubai, M.; Fukuda, O.; Ueno, N. J. Appl. Phys. 2006, 100, 114318.  doi: 10.1063/1.2401312

    64. [64]

      Kim, H. J.; Kim, Y. J. Mater. Design 2018, 151, 133.  doi: 10.1016/j.matdes.2018.04.048

    65. [65]

      Chen, Z.; Wang, Z.; Li, X.; Lin, Y.; Luo, N.; Long, M.; Zhao, N.; Xu, J. B. ACS Nano 2017, 11, 4507.  doi: 10.1021/acsnano.6b08027

    66. [66]

      Fan, F.-R.; Tian, Z.-Q.; Wang, Z.-L. Nano Energy 2012, 1, 328.  doi: 10.1016/j.nanoen.2012.01.004

    67. [67]

      Yuan, Z.; Zhou, T.; Yin, Y.; Cao, R.; Li, C.; Wang, Z. L. ACS Nano 2017, 11, 8364.  doi: 10.1021/acsnano.7b03680

    68. [68]

      Nie, J.; Chen, X.; Wang, Z. L. Adv. Funct. Mater. 2018, 1806351.

    69. [69]

      Pu, X.; Hu, W.; Wang, Z. L. Small 2018, 14, 1702817.  doi: 10.1002/smll.201702817

    70. [70]

      Chen, H.; Song, Y.; Cheng, X.; Zhang, H. Nano Energy 2019, 56, 252.  doi: 10.1016/j.nanoen.2018.11.061

    71. [71]

      Wu, H.; Guo, H.; Su, Z.; Shi, M.; Chen, X.; Cheng, X.; Han, M.; Zhang, H. J. Mater. Chem. A 2018, 6, 20277.  doi: 10.1039/C8TA08276F

    72. [72]

      Zhao, S.; Zhu, R. Adv. Mater. Technol. 2019, 4, 1900414.  doi: 10.1002/admt.201900414

    73. [73]

      Fu, Y.; Zhao, S.; Zhu, R. IEEE Trans. Biomed. Eng. 2018, 66, 1412.

    74. [74]

      Fu, Y.; Zhao, S.; Wang, L.; Zhu, R. Adv. Healthcare Mater. 2019, 8, 1900633.  doi: 10.1002/adhm.201900633

    75. [75]

      Yeom, C.; Chen, K.; Kiriya, D.; Yu, Z.; Cho, G.; Javey, A. Adv. Mater. 2015, 27, 1561.  doi: 10.1002/adma.201404850

    76. [76]

      Wang, C.; Hwang, D.; Yu, Z.; Takei, K.; Park, J.; Chen, T.; Ma, B.; Javey, A. Nat. Mater. 2013, 12, 899.  doi: 10.1038/nmat3711

    77. [77]

      Xu, J.; Wang, S.; Wang, G.-J. N.; Zhu, C.; Luo, S.; Jin, L.; Gu, X.; Chen, S.; Feig, V. R.; To, J. W. F.; Rondeau-Gagné, S.; Park, J.; Schroeder, B. C.; Lu, C.; Oh, J. Y.; Wang, Y.; Kim, Y.-H.; Yan, H.; Sinclair, R.; Zhou, D.; Xue, G.; Murmann, B.; Linder, C.; Cai, W.; Tok, J. B.-H.; Chung, J. W.; Bao, Z. Science 2017, 355, 59.  doi: 10.1126/science.aah4496

    78. [78]

      Wang, Z.; Guo, S.; Li, H.; Wang, B.; Sun, Y.; Xu, Z.; Chen, X.; Wu, K.; Zhang, X.; Xing, F.; Li, L.; Hu, W. Adv. Mater. 2019, 31, e1805630.

    79. [79]

      Sun, Q.-J.; Li, T.; Wu, W.; Venkatesh, S.; Zhao, X.-H.; Xu, Z.-X.; Roy, V. A. L. ACS Appl. Electron. Mater. 2019, 1, 711.  doi: 10.1021/acsaelm.9b00081

    80. [80]

      Wang, S.; Xu, J.; Wang, W.; Wang, G. N.; Rastak, R.; Molina-Lopez, F.; Chung, J. W.; Niu, S.; Feig, V. R.; Lopez, J.; Lei, T.; Kwon, S. K.; Kim, Y.; Foudeh, A. M.; Ehrlich, A.; Gasperini, A.; Yun, Y.; Murmann, B.; Tok, J. B.; Bao, Z. Nature 2018, 555, 83.  doi: 10.1038/nature25494

    81. [81]

      Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nat. Mater. 2010, 9, 821.  doi: 10.1038/nmat2835

    82. [82]

      Zang, Y.; Zhang, F.; Huang, D.; Gao, X.; Di, C. A.; Zhu, D. Nat. Commun. 2015, 6, 6269.  doi: 10.1038/ncomms7269

    83. [83]

      Chia, B. T.; Duo-Ru, C.; Hsin-Hung, L.; Yao-Joe, Y.; Wen-Pin, S.; Fu-Yu, C.; Kuang-Chao, F. In IEEE International Conference of Micro Electro Mechanical Systems (MEMS), Hyogo, Japan, 2007, p. 589.

    84. [84]

      Xu, B.; Akhtar, A.; Liu, Y.; Chen, H.; Yeo, W. H.; Park, S. I.; Boyce, B.; Kim, H.; Yu, J.; Lai, H. Y.; Jung, S.; Zhou, Y.; Kim, J.; Cho, S.; Huang, Y.; Bretl, T.; Rogers, J. A. Adv. Mater. 2016, 28, 4462.  doi: 10.1002/adma.201504155

    85. [85]

      Engel, J.; Chen, J.; Fan, Z.; Liu, C. Sens. Actuators, A 2005, 117, 50.  doi: 10.1016/j.sna.2004.05.037

    86. [86]

      Webb, R. C.; Bonifas, A. P.; Behnaz, A.; Zhang, Y.; Yu, K. J.; Cheng, H.; Shi, M.; Bian, Z.; Liu, Z.; Kim, Y. S.; Yeo, W. H.; Park, J. S.; Song, J.; Li, Y.; Huang, Y.; Gorbach, A. M.; Rogers, J. A. Nat. Mater. 2013, 12, 938.  doi: 10.1038/nmat3755

    87. [87]

      Han, I. Y.; Kim, S. J. Sens. Actuators, A 2008, 141, 52.  doi: 10.1016/j.sna.2007.07.020

    88. [88]

      Yang, J.; Wei, D.; Tang, L.; Song, X.; Luo, W.; Chu, J.; Gao, T.; Shi, H.; Du, C. RSC Adv. 2015, 5, 25609.  doi: 10.1039/C5RA00871A

    89. [89]

      Shih, W. P.; Tsao, L. C.; Lee, C. W.; Cheng, M. Y.; Chang, C.; Yang, Y. J.; Fan, K. C. Sensors 2010, 10, 3597.  doi: 10.3390/s100403597

    90. [90]

      Yang, Y.; Lin, Z.-H.; Hou, T.; Zhang, F.; Wang, Z. L. Nano Res. 2012, 5, 888.  doi: 10.1007/s12274-012-0272-8

    91. [91]

      Agarwal, K.; Kaushik, V.; Varandani, D.; Dhar, A.; Mehta, B. R. J. Alloys Compd. 2016, 681, 394.  doi: 10.1016/j.jallcom.2016.04.161

    92. [92]

      Vieira, E. M. F.; Figueira, J.; Pires, A. L.; Grilo, J.; Silva, M. F.; Pereira, A. M.; Goncalves, L. M. J. Alloys Compd. 2019, 774, 1102.  doi: 10.1016/j.jallcom.2018.09.324

    93. [93]

      Fourmont, P.; Gerlein, L. F.; Fortier, F. X.; Cloutier, S. G.; Nechache, R. ACS Appl. Mater. Interfaces 2018, 10, 10194.  doi: 10.1021/acsami.7b18852

    94. [94]

      Shi, Y.; Wang, Y.; Deng, Y.; Gao, H.; Lin, Z.; Zhu, W.; Ye, H. Energy Convers. Manage. 2014, 80, 110.  doi: 10.1016/j.enconman.2014.01.010

    95. [95]

      Zeng, X.; Yan, C.; Ren, L.; Zhang, T.; Zhou, F.; Liang, X.; Wang, N.; Sun, R.; Xu, J.-B.; Wong, C.-P. Adv. Electron. Mater. 2019, 5, 1800612.  doi: 10.1002/aelm.201800612

    96. [96]

      Yu, X.; Chen, X.; Yu, X.; Chen, X.; Ding, X.; Zhao, X. IEEE Trans. Electron Devices 2019, 66, 1911.  doi: 10.1109/TED.2019.2897142

    97. [97]

      Li, T.; Li, L.; Sun, H.; Xu, Y.; Wang, X.; Luo, H.; Liu, Z.; Zhang, T. Adv. Sci. 2017, 4, 1600404.  doi: 10.1002/advs.201600404

    98. [98]

      Zhu, P.; Liu, Y.; Fang, Z.; Kuang, Y.; Zhang, Y.; Peng, C.; Chen, G. Langmuir 2019, 35, 4834.  doi: 10.1021/acs.langmuir.8b04259

    99. [99]

      Wu, J.; Sun, Y. M.; Wu, Z.; Li, X.; Wang, N.; Tao, K.; Wang, G. P. ACS Appl. Mater. Interfaces 2019, 11, 4242.  doi: 10.1021/acsami.8b18599

    100. [100]

      Lv, C.; Hu, C.; Luo, J.; Liu, S.; Qiao, Y.; Zhang, Z.; Song, J.; Shi, Y.; Cai, J.; Watanabe, A. Nanomaterials (Basel) 2019, 9, 422.  doi: 10.3390/nano9030422

    101. [101]

      Pang, Y.; Jian, J.; Tu, T.; Yang, Z.; Ling, J.; Li, Y.; Wang, X.; Qiao, Y.; Tian, H.; Yang, Y.; Ren, T. L. Biosens. Bioelectron. 2018, 116, 123.  doi: 10.1016/j.bios.2018.05.038

    102. [102]

      Choi, S. J.; Yu, H.; Jang, J. S.; Kim, M. H.; Kim, S. J.; Jeong, H. S.; Kim, I. D. Small 2018, 14, 1703934.  doi: 10.1002/smll.201703934

    103. [103]

      Trung, T. Q.; Duy, L. T.; Ramasundaram, S.; Lee, N.-E. Nano Res. 2017, 10, 2021.  doi: 10.1007/s12274-016-1389-y

    104. [104]

      Jiang, P.; Zhao, S.; Zhu, R. Sensors 2015, 15, 31738.  doi: 10.3390/s151229881

    105. [105]

      Zhao, S.; Zhu, R. Adv. Mater. Technol. 2018, 3, 1800056.  doi: 10.1002/admt.201800056

    106. [106]

      Dinh, T.; Phan, H.-P.; Nguyen, T.-K.; Qamar, A.; Woodfield, P.; Zhu, Y.; Nguyen, N.-T.; Viet Dao, D. J. Phys. D: Appl. Phys. 2017, 50, 215401.  doi: 10.1088/1361-6463/aa6cd6

    107. [107]

      Dieffenderfer, J.; Goodell, H.; Mills, S.; McKnight, M.; Yao, S.; Lin, F.; Beppler, E.; Bent, B.; Lee, B.; Misra, V.; Zhu, Y.; Oralkan, O.; Strohmaier, J.; Muth, J.; Peden, D.; Bozkurt, A. IEEE J. Biomed. Health Inform. 2016, 20, 1251.  doi: 10.1109/JBHI.2016.2573286

    108. [108]

      Cao, Z.; Zhu, R.; Que, R. Y. IEEE Trans. Biomed. Eng. 2012, 59, 3110.  doi: 10.1109/TBME.2012.2211354

    109. [109]

      Que, R.; Zhu, R. Sensors 2013, 14, 564.  doi: 10.3390/s140100564

    110. [110]

      Li, G.; Zhao, S.; Zhu, R. IEEE Sens. J. 2019, 19, 297.  doi: 10.1109/JSEN.2018.2874809

    111. [111]

      Que, R.-Y.; Zhu, R. IEEE Sens. J. 2015, 15, 1931.  doi: 10.1109/JSEN.2014.2367017

    112. [112]

      Nguyen, N. Flow Meas. Instrum. 1997, 8, 7.  doi: 10.1016/S0955-5986(97)00019-8

    113. [113]

      Kuo, J. T.; Yu, L.; Meng, E. Micromachines 2012, 3, 550.  doi: 10.3390/mi3030550

    114. [114]

      Liu, P.; Zhu, R.; Que, R. Sensors 2009, 9, 9533.  doi: 10.3390/s91209533

    115. [115]

      Bruun, H. H., Hot-Wire Anemometry: Principles and Signal Analysis, Oxford University Press, New York, USA, 1995.

    116. [116]

      Mailly, F.; Giani, A.; Bonnot, R.; Temple-Boyer, P.; Pascal-Delannoy, F.; Foucaran, A.; Boyer, A. Sens. Actuators, A 2001, 94, 32.  doi: 10.1016/S0924-4247(01)00668-9

    117. [117]

      Kim, S.; Nam, T.; Park, S. Sens. Actuators, A 2004, 114, 312.  doi: 10.1016/j.sna.2003.12.019

    118. [118]

      Kim, T. H.; Kim, D.-K.; Kim, S. J. Int. J. Heat Mass Transfer 2009, 52, 2140.  doi: 10.1016/j.ijheatmasstransfer.2008.10.006

    119. [119]

      Jiang, P.; Zhu, R.; Dong, X.; Chang, Y. Sleep Breath. 2017, 22, 123.

    120. [120]

      Zhang, J.; Liu, S.; Zhu, R. IEEE Access 2019, doi: 10.1109/ACCESS.2019.2921978.

    121. [121]

      Liu, S.; Zhang, J.; Zhu, R. IEEE Trans. Biomed. Eng. 2019, doi: 10.1109/TBME.2019.2924689.

    122. [122]

      Dinh, T.; Phan, H.-P.; Nguyen, T.-K.; Qamar, A.; Foisal, A. R. M.; Nguyen Viet, T.; Tran, C.-D.; Zhu, Y.; Nguyen, N.-T.; Dao, D. V. J. Mater. Chem. C 2016, 4, 10061.  doi: 10.1039/C6TC02708C

    123. [123]

      Zhao, D.; Qian, X.; Gu, X.; Jajja, S. A.; Yang, R. J. Electron. Packaging 2016, 138, 040802.  doi: 10.1115/1.4034605

    124. [124]

      Pope, A.; Zawilski, B.; Tritt, T. Cryogenics 2001, 41, 725.  doi: 10.1016/S0011-2275(01)00140-0

    125. [125]

      Zawilski, B. M.; Littleton, R. T.; Tritt, T. M. Rev. Sci. Instrum. 2001, 72, 1770.  doi: 10.1063/1.1347980

    126. [126]

      Zhu, J.; Tang, D.; Wang, W.; Liu, J.; Holub, K. W.; Yang, R. J. Appl. Phys. 2010, 108, 094315.  doi: 10.1063/1.3504213

    127. [127]

      Gustafsson, S. E. Rev. Sci. Instrum. 1991, 62, 797.  doi: 10.1063/1.1142087

    128. [128]

      Assael, M. J.; Antoniadis, K. D.; Wakeham, W. A. Int. J. Thermophys. 2010, 31, 1051.  doi: 10.1007/s10765-010-0814-9

    129. [129]

      Lee, J.; Lee, H.; Baik, Y.-J.; Koo, J. Int. J. Heat Mass Transfer 2015, 89, 116.  doi: 10.1016/j.ijheatmasstransfer.2015.05.064

    130. [130]

      Ruoho, M.; Valset, K.; Finstad, T.; Tittonen, I. Nanotechnology 2015, 26, 195706.  doi: 10.1088/0957-4484/26/19/195706

    131. [131]

      Mishra, V.; Hardin, C. L.; Garay, J. E.; Dames, C. Rev. Sci. Instrum. 2015, 86, 054902.  doi: 10.1063/1.4918800

    132. [132]

      Tian, L.; Li, Y.; Webb, R. C.; Krishnan, S.; Bian, Z.; Song, J.; Ning, X.; Crawford, K.; Kurniawan, J.; Bonifas, A.; Ma, J.; Liu, Y.; Xie, X.; Chen, J.; Liu, Y.; Shi, Z.; Wu, T.; Ning, R.; Li, D.; Sinha, S.; Cahill, D. G.; Huang, Y.; Rogers, J. A. Adv. Funct. Mater. 2017, 27, 1701282.  doi: 10.1002/adfm.201701282

    133. [133]

      Russell, R. A.; Paoloni, F. J. IEEE Trans. Instrum. Meas. 1985, 34, 458.

    134. [134]

      Wade, J.; Bhattacharjee, T.; Williams, R. D.; Kemp, C. C. Robot. Auton. Syst. 2017, 96, 1.  doi: 10.1016/j.robot.2017.06.008

    135. [135]

      Siegel, D.; Garabieta, I.; Hollerbach, J. In IEEE International Conference of Robotics and Automation (ICRA), New York, USA, 1986, p. 1286.

    136. [136]

      Lin, C. H.; Erickson, T. W.; Fishel, J. A.; Wettels, N.; Loeb, G. E. In IEEE International Conference of Robotics and Biomimetics (ROBIO), Guilin, China, 2009, p. 129.

    137. [137]

      Kerr, E.; McGinnity, T. M.; Coleman, S. In IEEE International Conference of Robotics and Biomimetics (ROBIO), Shenzhen, China, 2013, p. 1048.

    138. [138]

      Bhattacharjee, T.; Wade, J.; Kemp, C. C. In Proceedings of Robotics: Science and Systems, Rome, Italy, 2015.

    139. [139]

      Eguíluz, A. G.; Raño, I.; Coleman, S. A.; McGinnity, T. M. In IEEE International Conference of Intelligent Robots and Systems (IROS), Daejeon, South Korea, 2016, p. 4912.

    140. [140]

      Kerr, E.; McGinnity, T. M.; Coleman, S. Expert Syst. Appl. 2018, 94, 94.  doi: 10.1016/j.eswa.2017.10.045

    141. [141]

      Bhattacharjee, T.; Clever, H. M.; Wade, J.; Kemp, C. IEEE Robot. Autom. Lett. 2018, 3, 2523.  doi: 10.1109/LRA.2018.2810956

    142. [142]

      Xu, D.; Loeb, G. E.; Fishel, J. A. In IEEE International Conference of Robotics and Automation (ICRA), New Jersey, USA, 2013, p. 3056.

    143. [143]

      Yeo, W. H.; Kim, Y. S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S. H.; Kang, Z.; Huang, Y.; Rogers, J. A. Adv. Mater. 2013, 25, 2773.  doi: 10.1002/adma.201204426

    144. [144]

      Kim, M.-g.; Alrowais, H.; Brand, O. Adv. Electron. Mater. 2018, 4, 1700434.  doi: 10.1002/aelm.201700434

    145. [145]

      Chung, H. U.; Kim, B. H.; Lee, J. Y.; Lee, J.; Xie, Z.; Ibler, E. M.; Lee, K.; Banks, A.; Jeong, J. Y.; Kim, J.; Ogle, C.; Grande, D.; Yu, Y.; Jang, H.; Assem, P.; Ryu, D.; Kwak, J. W.; Namkoong, M.; Park, J. B.; Lee, Y.; Kim, D. H.; Ryu, A.; Jeong, J.; You, K.; Ji, B.; Liu, Z.; Huo, Q.; Feng, X.; Deng, Y.; Xu, Y.; Jang, K.-I.; Kim, J.; Zhang, Y.; Ghaffari, R.; Rand, C. M.; Schau, M.; Hamvas, A.; Weese-Mayer, D. E.; Huang, Y.; Lee, S. M.; Lee, C. H.; Shanbhag, N. R.; Paller, A. S.; Xu, S.; Rogers, J. A. Science 2019, 363, eaau0780.  doi: 10.1126/science.aau0780

    146. [146]

      Hua, Q.; Sun, J.; Liu, H.; Bao, R.; Yu, R.; Zhai, J.; Pan, C.; Wang, Z. L. Nat. Commun. 2018, 9, 244.  doi: 10.1038/s41467-017-02685-9

    147. [147]

      Kabiri Ameri, S.; Ho, R.; Jang, H.; Tao, L.; Wang, Y.; Wang, L.; Schnyer, D. M.; Akinwande, D.; Lu, N. ACS Nano 2017, 11, 7634.  doi: 10.1021/acsnano.7b02182

    148. [148]

      Wang, Y.; Qiu, Y.; Ameri, S. K.; Jang, H.; Dai, Z.; Huang, Y.; Lu, N. npj Flex. Electron. 2018, 2, 6.  doi: 10.1038/s41528-017-0019-4

    149. [149]

      Jang, K. I.; Li, K.; Chung, H. U.; Xu, S.; Jung, H. N.; Yang, Y.; Kwak, J. W.; Jung, H. H.; Song, J.; Yang, C.; Wang, A.; Liu, Z.; Lee, J. Y.; Kim, B. H.; Kim, J. H.; Lee, J.; Yu, Y.; Kim, B. J.; Jang, H.; Yu, K. J.; Kim, J.; Lee, J. W.; Jeong, J. W.; Song, Y. M.; Huang, Y.; Zhang, Y.; Rogers, J. A. Nat. Commun. 2017, 8, 15894.  doi: 10.1038/ncomms15894

    150. [150]

      Lee, H.; Song, C.; Hong, Y. S.; Kim, M. S.; Cho, H. R.; Kang, T.; Shin, K.; Choi, S. H.; Hyeon, T.; Kim, D.-H. Sci. Adv. 2017, 3, e1601314.

    151. [151]

      Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R. M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; Rogers, J. A. Sci. Transl. Med. 2016, 8, 366ra165.

    152. [152]

      Gao, W.; Emaminejad, S.; Nyein, H. Y. Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H. M.; Ota, H.; Shiraki, H.; Kiriya, D.; Javey, A. Nature 2016, 529, 509.  doi: 10.1038/nature16521

    153. [153]

      Chen, Y.; Lu, S.; Zhang, S.; Li, Y.; Qu, Z.; Chen, Y.; Lu, B.; Wang, X.; Feng, X. Sci. Adv. 2017, 3, e1701629.  doi: 10.1126/sciadv.1701629

    154. [154]

      Lipani, L.; Dupont, B. G. R.; Doungmene, F.; Marken, F.; Tyrrell, R. M.; Guy, R. H.; Ilie, A. Nat. Nanotechnol. 2018, 13, 504.  doi: 10.1038/s41565-018-0112-4

    155. [155]

      Kim, S. Y.; Park, S.; Park, H. W.; Park, D. H.; Jeong, Y.; Kim, D. H. Adv. Mater. 2015, 27, 4178.  doi: 10.1002/adma.201501408

    156. [156]

      Tien, N. T.; Jeon, S.; Kim, D. I.; Trung, T. Q.; Jang, M.; Hwang, B. U.; Byun, K. E.; Bae, J.; Lee, E.; Tok, J. B.; Bao, Z.; Lee, N. E.; Park, J. J. Adv. Mater. 2014, 26, 796.  doi: 10.1002/adma.201302869

    157. [157]

      Kim, D. I.; Trung, T. Q.; Hwang, B. U.; Kim, J. S.; Jeon, S.; Bae, J.; Park, J. J.; Lee, N. E. Sci. Rep. 2015, 5, 12705.  doi: 10.1038/srep12705

    158. [158]

      Lee, J. S.; Shin, K. Y.; Cheong, O. J.; Kim, J. H.; Jang, J. Sci. Rep. 2015, 5, 7887.  doi: 10.1038/srep07887

    159. [159]

      Hou, C.; Wang, H.; Zhang, Q.; Li, Y.; Zhu, M. Adv. Mater. 2014, 26, 5018.  doi: 10.1002/adma.201401367

    160. [160]

      Ai, Y.; Lou, Z.; Chen, S.; Chen, D.; Wang, Z. M.; Jiang, K.; Shen, G. Nano Energy 2017, 35, 121.  doi: 10.1016/j.nanoen.2017.03.039

    161. [161]

      Zhang, F.; Zang, Y.; Huang, D.; Di, C. A.; Zhu, D. Nat. Commun. 2015, 6, 8356.  doi: 10.1038/ncomms9356

    162. [162]

      Ho, D. H.; Sun, Q.; Kim, S. Y.; Han, J. T.; Kim do, H.; Cho, J. H. Adv. Mater. 2016, 28, 2601.  doi: 10.1002/adma.201505739

    163. [163]

      Zhao, S.; Zhu, R. Adv. Mater. 2017, 29, 1606151.  doi: 10.1002/adma.201606151

    164. [164]

      Zhao, S.; Jiang, P.; Zhu, R.; Que, R. In IEEE Sensors Conference, Orlando, USA, 2016, p. 1.

    165. [165]

      Zhao, S.; Zhu, R. In International Conference of Flexible and Printed Electronics (ICFPE), Beijing, China, 2014, p. 89.

    166. [166]

      Tee, B. C.; Chortos, A.; Berndt, A.; Nguyen, A. K.; Tom, A.; McGuire, A.; Lin, Z. C.; Tien, K.; Bae, W. G.; Wang, H.; Mei, P.; Chou, H. H.; Cui, B.; Deisseroth, K.; Ng, T. N.; Bao, Z. Science 2015, 350, 313.  doi: 10.1126/science.aaa9306

    167. [167]

      Kim, Y.; Chortos, A.; Xu, W.; Liu, Y.; Oh, J. Y.; Son, D.; Kang, J.; Foudeh, A. M.; Zhu, C.; Lee, Y.; Niu, S.; Liu, J.; Pfattner, R.; Bao, Z.; Lee, T.-W. Science 2018, 360, 998.  doi: 10.1126/science.aao0098

  • 加载中
    1. [1]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    2. [2]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    5. [5]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    9. [9]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    10. [10]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    11. [11]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    12. [12]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    16. [16]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    17. [17]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    18. [18]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

Metrics
  • PDF Downloads(135)
  • Abstract views(3593)
  • HTML views(1171)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return