Citation: Wang Qiang, Gu Qing, You Shu-Li. Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers[J]. Acta Chimica Sinica, ;2019, 77(8): 690-704. doi: 10.6023/A19060222 shu

Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers

  • Corresponding author: You Shu-Li, slyou@sioc.ac.cn
  • Received Date: 19 June 2019
    Available Online: 17 August 2019

    Fund Project: the National Natural Science Foundation of China 21572250Project supported by the National Natural Science Foundation of China (91856201, 21572250), the Initiative Postdocs Supporting Program (BX20180342) and China Postdoctoral Science Foundation (2019M650092)China Postdoctoral Science Foundation 2019M650092the Initiative Postdocs Supporting Program BX20180342the National Natural Science Foundation of China 91856201

Figures(35)

  • Axial chirality is of significant importance in chiral molecules. Axially chiral biaryls are existed in numerous natural products and biologically active molecules. Moreover, they have been extensively used as chiral catalysts and chiral ligands in asymmetric catalysis. Due to the importance of these privileged scaffolds, considerable attention has been attracted to develop novel, efficient and practical methods for their asymmetric synthesis by utilizing chiral transition-metal catalysis or chiral organocatalysis. Among those reported elegant achievements, asymmetric C—H bond functionalization reactions are the most concise and efficient methods for the synthesis of axial chiral biaryls in terms of atom and step economies. With the advancement of transition-metal-catalyzed asymmetric C—H bond functionalization reactions, they largely promote the field of asymmetric synthesis of axially chiral biaryls. Recent progress on the development of synthesis of axially chiral biaryls via transition metal (Pd-, Rh-, and Ir-) catalyzed asymmetric C—H bond functionalization reactions are summarized in this review. Those mainly include:Rh-catalyzed enantioselective C(sp2)-H bond alkylation and arylation reactions with the combination of rhodium (I) catalyst precursors and chiral phosphine ligands; Rh-catalyzed enantioselective C(sp2)-H bond alkenylation, arylation and annulation reactions with well-defined chiral rhodium (Ⅲ)-Cp(SCp) complexes; Ir-catalyzed enantioselective C(sp2)-H bond arylation reactions with chiral iridium (Ⅲ)-Cp complex and chiral amino acid as co-catalyst; Pd-catalyzed diastereoselective C(sp2)-H bond alkenylation, iodination, and arylation reactions using chiral p-tolyl sulfoxide auxiliary or menthyl phenylphosphate group as a directing group; Pd-catalyzed intramolecular enantioselective C(sp2)-H bond arylation reaction with Pd(0) catalyst precursors and chiral TADDOL-phosphoramidites; Pd-catalyzed intermolecular enantioselective C(sp2)-H bond iodination, alkenylation, alkynylation, allylation and arylation reactions with Pd(Ⅱ) catalyst precursors and mono-N-protected amino acids (MPAAs). In addition, preparation of varieties of novel axially chiral ligands by utilizing these methods and their applications in catalytic asymmetric reactions are also covered. Meanwhile, applications of these methods as key steps in the synthesis of natural products are also discussed.
  • 加载中
    1. [1]

      For selected reviews, (a) Chang, J.; Reiner, J.; Xie, J. Chem. Rev. 2005, 105, 4581. (b) Kozlowski, M. C.; Morgan, B. J.; Linton, E. C. Chem. Soc. Rev. 2009, 38, 3193. (c) Bringmann, G.; Gulder, T.; Gulder, T. A. M.; Breuning, M. Chem. Rev. 2011, 111, 563.

    2. [2]

      For selected works, see: (a) Wu, Y.-L.; Ferroni, F.; Pieraccini, S.; Schweizer, W. B.; Frank, B. B.; Spada, G. P.; Diederich, F. Org. Biomol. Chem. 2012, 10, 8016. (b) Zhu, Y.-Y.; Wu, X.-D.; Gu, S.-X.; Pu, L. J. Am. Chem. Soc. 2019, 141, 175. For a review: (c) Pu, L. Acc. Chem. Res. 2012, 45, 150.

    3. [3]

      (a) Clayden, J.; Moran, W. J.; Edwards, P. J.; LaPlante, S. R. Angew. Chem. Int. Ed. 2009, 48, 6398. (b) LaPlante, S. R.; Edwards, P. J.; Fader, L. D.; Jakalian, A.; Hucke, O. ChemMedChem 2011, 6, 505. (c) Zask, A.; Murphy, J.; Ellestad, G. A. Chirality 2013, 25, 265. (d) Smyth, J. E.; Butler, N. M.; Keller, P. A. Nat. Prod. Rep. 2015, 32, 1562.

    4. [4]

      For selected reviews, see: (a) Akiyama, T.; Itoh, J.; Fuchibe, K. Adv. Synth. Catal. 2006, 348, 999. (b) Brunel, J. M. Chem. Rev. 2007, 107, PR1. (c) Yu, J.; Shi, F.; Gong, L.-Z. Acc. Chem. Res. 2011, 44, 1156. (d) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047. (e) Min, C.; Seidel, D. Chem. Soc. Rev. 2017, 46, 5889. (f) Wang, Q.; Gu, Q.; You, S.-L. Angew. Chem. Int. Ed. 2019, 58, 6818. For a book, see: (g) Privileged Chiral Ligands and Catalysts, Ed.: Zhou, Q.-L., Wiley-VCH, Weinheim, Germany, 2011.

    5. [5]

    6. [6]

    7. [7]

      Kakiuchi, F.; Le Gendre, P.; Yamada, A.; Ohtaki, H.; Murai, S. Tetrahedron:Asymmetry 2000, 11, 2647.  doi: 10.1016/S0957-4166(00)00244-5

    8. [8]

      For reviews on asymmetric C-H functionalization, see: (a) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc. Rev. 2009, 38, 3242. (b) Yang, L.; Huang, H. Catal. Sci. Technol. 2012, 2, 1099. (c) Engle, K. M.; Yu, J.-Q. J. Org. Chem. 2013, 78, 8927. (d) Wencel-Delord, J.; Colobert, F. Chem. Eur. J. 2013, 19, 14010. (e) Zheng, C.; You, S.-L. RSC Adv. 2014, 4, 6173. (f) Pedroni, J.; Cramer, N. Chem. Commun. 2015, 51, 17647. (g) Newton, C. G.; Wang, S.-G.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908. (h) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2017, 50, 351; (i) Saint-Denis, T. G.; Zhu, R.-Y.; Chen, G.; Wu, Q.-F.; Yu, J.-Q. Science 2018, 359, 759. For a book, see: (j) Asymmetric Functionalization of C-H Bonds, Ed.: You, S.-L., RSC: Cambridge, UK, 2015.

    9. [9]

      Zheng, J.; You, S.-L. Angew. Chem. Int. Ed. 2014, 53, 13244.  doi: 10.1002/anie.201408805

    10. [10]

      (a) Ye, B.; Cramer, N. Science 2012, 338, 504. (b) Ye, B.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 636. (c) Ye, B.; Donets, P. A.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 507. (d) Ye, B.; Cramer, N. Angew. Chem. Int. Ed. 2014, 53, 7896.

    11. [11]

      Zheng, J.; Cui, W. J.; Zheng, C.; You, S.-L. J. Am. Chem. Soc. 2016, 138, 5242.  doi: 10.1021/jacs.6b02302

    12. [12]

      Gre ies, S.; Klauck, F. J. R.; Kim, J. H.; Daniliuc, C. G.; Glorius, F. Angew. Chem. Int. Ed. 2018, 57, 9950.  doi: 10.1002/anie.201805680

    13. [13]

      Wang, Q.; Cai, Z.-J.; Liu, C.-X.; Gu, Q.; You, S.-L. J. Am. Chem. Soc. 2019, 141, 9504.  doi: 10.1021/jacs.9b03862

    14. [14]

      Jia, Z. J.; Merten, C.; Gontla, R.; Daniliuc, C. G.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2017, 56, 2429.  doi: 10.1002/anie.201611981

    15. [15]

      For reviews on chiral cyclopentadienyl ligands, see: (a) Ye, B.; Cramer, N. Acc. Chem. Res. 2015, 48, 1308. (b) Newton, C. G.; Kossler, D.; Cramer, N. J. Am. Chem. Soc. 2016, 138, 3935.

    16. [16]

      Shan, G.; Flegel, J.; Li, H.; Merten, C.; Ziegler, S.; Antonchick, A. P.; Waldmann, H. Angew. Chem. Int. Ed. 2018, 57, 14250.  doi: 10.1002/anie.201809680

    17. [17]

      Tian, M.; Bai, D.; Zheng, G.; Chang, J.; Li, X. J. Am. Chem. Soc. 2019, 141, 9527.  doi: 10.1021/jacs.9b04711

    18. [18]

      Jang, Y. S.; Dieckmann, M.; Cramer, N. Angew. Chem. Int. Ed. 2017, 56, 15088.  doi: 10.1002/anie.201708440

    19. [19]

      B rner, A. Phosphorus Ligands in Asymmetric Catalysis: Synthesis and Applications, Vol. 1~3, Wiley-VCH, Weinheim, 2008.

    20. [20]

      Cramer, N.; Jang, Y. S.; Wozniak, L.; Pedroni, J. Angew. Chem. Int. Ed. 2018, 57, 12901.  doi: 10.1002/anie.201807749

    21. [21]

      For reviews: (a) Wencel-Delord, J.; Colobert, F. Synlett 2015, 26, 2644. (b) Tang, K.-X.; Wang, C.-M.; Gao, T.-H.; Chen, L.; Fan, L.; Sun, L.-P. Adv. Synth. Catal. 2019, 361, 26.

    22. [22]

      Wesch, T.; Leroux, F. R.; Colobert, F. Adv. Synth. Catal. 2013, 355, 2139.  doi: 10.1002/adsc.201300446

    23. [23]

      (a) Hazra, C. K.; Dherbassy, Q.; Wencel-Delord, J.; Colobert, F. Angew. Chem. Int. Ed. 2014, 53, 13871. (b) Dherbassy, Q.; Schwertz, G.; Hazra, C. K.; Wesch, T.; Wencel-Delord, J.; Colobert, F. Phosphorus, Sulfur Silicon Relat. Elem. 2015, 190, 1339.

    24. [24]

      Dherbassy, Q.; Schwertz, G.; Chessé, M.; Hazra, C. K.; Wencel-Delord, J.; Colobert, F. Chem. Eur. J. 2016, 22, 1735.  doi: 10.1002/chem.201503650

    25. [25]

      Dherbassy, Q.; Wencel-Delord, J.; Colobert, F. Tetrahedron 2016, 72, 5238.  doi: 10.1016/j.tet.2016.03.060

    26. [26]

      Dherbassy, Q.; Djukic, J. P.; Wencel-Delord, J.; Colobert, F. Angew. Chem. Int. Ed. 2018, 57, 4668.  doi: 10.1002/anie.201801130

    27. [27]

      (a) Ma, Y. N.; Zhang, H.-Y.; Yang, S.-D. Org. Lett. 2015, 17, 2034. For reviews, see: (b) Ma, Y. N.; Li, S. X.; Yang, S.-D. Acc. Chem. Res. 2017, 50, 1480. (c) Zhang, Z.; Dixneuf, P. H.; Soule, J. F. Chem. Commun. 2018, 54, 7265.

    28. [28]

      Albicker, M., R; Cramer, N. Angew. Chem. Int. Ed. 2009, 48, 9139.  doi: 10.1002/anie.200905060

    29. [29]

      He, C.; Hou, M.; Zhu, Z.; Gu, Z. ACS Catal. 2017, 7, 5316.  doi: 10.1021/acscatal.7b01855

    30. [30]

      Newton, C. G.; Braconi, E.; Kuziola, J.; Wodrich, M. D.; Cramer, N. Angew. Chem. Int. Ed. 2018, 57, 11040.  doi: 10.1002/anie.201806527

    31. [31]

      Yamaguchi, K.; Yamaguchi, J.; Studer, A.; Itami, K. Chem. Sci. 2012, 3, 2165.  doi: 10.1039/c2sc20277h

    32. [32]

      Yamaguchi, K.; Kondo, H.; Yamaguchi, J.; Itami, K. Chem. Sci. 2013, 4, 3753.  doi: 10.1039/c3sc51206a

    33. [33]

      Nishimoto, Y.; Kondo, H.; Yamaguchi, K.; Yokogawa, D.; Yamaguchi, J.; Itami, K.; Irle, S. J. Org. Chem. 2017, 82, 4900.  doi: 10.1021/acs.joc.6b02675

    34. [34]

      Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q. Angew. Chem. Int. Ed. 2008, 47, 4882.  doi: 10.1002/anie.200801030

    35. [35]

      Gao, D.-W.; Gu, Q.; You, S.-L. ACS Catal. 2014, 4, 2741.  doi: 10.1021/cs500813z

    36. [36]

      Li, S. X.; Ma, Y.-N.; Yang, S.-D. Org. Lett. 2017, 19, 1842.  doi: 10.1021/acs.orglett.7b00608

    37. [37]

      Zhang, F.-L.; Hong, K.; Li, T. J.; Park, H.; Yu, J.-Q. Science 2016, 351, 252.  doi: 10.1126/science.aad7893

    38. [38]

      Yao, Q.-J.; Zhang, S.; Zhan, B.-B.; Shi, B.-F. Angew. Chem. Int. Ed. 2017, 56, 6617.  doi: 10.1002/anie.201701849

    39. [39]

      Fan, J.; Yao, Q.-J.; Liu, Y.-H.; Liao, G.; Zhang, S.; Shi, B.-F. Org. Lett. 2019, 21, 3352.  doi: 10.1021/acs.orglett.9b01099

    40. [40]

      Liao, G.; Yao, Q.-J.; Zhang, Z.-Z.; Wu, Y.-J.; Huang, D. Y.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 3661.  doi: 10.1002/anie.201713106

    41. [41]

      Zhang, S.; Yao, Q.-J.; Liao, G.; Li, X.; Li, H.; Chen, H.-M.; Hong, X.; Shi, B.-F. ACS Catal. 2019, 9, 1956.  doi: 10.1021/acscatal.8b04870

    42. [42]

      Liao, G.; Li, B.; Chen, H.-M.; Yao, Q. J.; Xia, Y. N.; Luo, J.; Shi, B.-F. Angew. Chem. Int. Ed. 2018, 57, 17151.  doi: 10.1002/anie.201811256

    43. [43]

      Liao, G.; Chen, H.-M.; Xia, Y.-N.; Li, B.; Yao, Q.-J.; Shi, B.-F. Angew. Chem. Int. Ed. 2019, DOI:10.1002/anie.201906700.  doi: 10.1002/anie.201906700

    44. [44]

      Wen, W.; Chen, L.; Luo, M.-J.; Zhang, Y.; Chen, Y.-C.; Ouyang, Q.; Guo, Q.-X. J. Am. Chem. Soc. 2018, 140, 9774.  doi: 10.1021/jacs.8b06676

    45. [45]

      Luo, J.; Zhang, T.; Wang, L.; Liao, G.; Yao, Q.-J.; Wu, Y.-J.; Zhan, B.-B.; Lan, Y.; Lin, X.-F.; Shi, B.-F. Angew. Chem. Int. Ed. 2019, 58, 6708.  doi: 10.1002/anie.201902126

    46. [46]

      Sun, Q.-Y.; Ma, W.-Y.; Yang, K.-F.; Cao, J.; Zheng, Z.-J.; Xu, Z.; Cui, Y.-M.; Xu, L.-W. Chem. Commun. 2018, 54, 10706.  doi: 10.1039/C8CC05555F

    47. [47]

      Li, H.; Yan, X.; Zhang, J.; Guo, W.; Jiang, J.; Wang, J. Angew. Chem. Int. Ed. 2019, 58, 6732.  doi: 10.1002/anie.201901619

  • 加载中
    1. [1]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    4. [4]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    7. [7]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    8. [8]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    9. [9]

      Haiying Wang Andrew C.-H. Sue . How to Visually Identify Homochiral Crystals. University Chemistry, 2024, 39(3): 78-85. doi: 10.3866/PKU.DXHX202309004

    10. [10]

      Keying Qu Jie Li Ziqiu Lai Kai Chen . Unveiling the Mystery of Chirality from Tartaric Acid. University Chemistry, 2024, 39(9): 369-378. doi: 10.12461/PKU.DXHX202310091

    11. [11]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    12. [12]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    13. [13]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    14. [14]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    15. [15]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    18. [18]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    19. [19]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(77)
  • Abstract views(2238)
  • HTML views(361)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return