Citation: Zhang Heng, Mou Xueqing, Chen Gong, He Gang. Copper-catalyzed Intramolecular Aminoperfluoroalkylation Reaction of O-Homoallyl Benzimidates[J]. Acta Chimica Sinica, ;2019, 77(9): 884-888. doi: 10.6023/A19060220 shu

Copper-catalyzed Intramolecular Aminoperfluoroalkylation Reaction of O-Homoallyl Benzimidates

  • Corresponding author: Chen Gong, gongchen@nankai.edu.cn He Gang, hegang@nankai.edu.cn
  • Received Date: 18 June 2019
    Available Online: 13 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (21672105, 21702109, 21890722), Natural Science Foundation of Tianjin (17JCYBJC19700, 18JCZDJC32800), and the Fundamental Research Funds for the Central Universities (Nankai University (No. 63161122)). We dedicate this work to the 100th anniversary of Nankai University

Figures(5)

  • Azaheterocycles have been broadly applied in the development of therapeutic agents, agrochemicals and functional material molecules. Azaheterocycles equipped with perfluoroalkyl group usually manifest superior physical and biological properties than their parent molecules, such as showing improved metabolic stability and high lipophilicity. The synthesis of perfluoroalkyl modified azaheterocycles has attracted considerable research interest in recent years. The strategy of intramolecular aminoperfluoroalkylation of alkenes, which functionalize C=C bond with an external perfluoroalkyl group and an internal amine nucleophile in one pot, provides a streamlined synthesis of perfluoroalkyl substituted azaheterocycles. This strategy has been applied by Liu, Sodeoka and other research groups in the synthesis of perfluoroalkyl substituted aziridines, pyrrolidines, lactams and pyrazolines featuring the use of pendent amine, amide, hydrazone or urea group as internal amine source. We have previously developed a copper(Ⅰ)-catalyzed intramolecular aminotrifluoromethylation reaction of O-homoallyl benzimidates with Togni reagent Ⅰ for the synthesis of trifluoromethyl containing chiral 1, 3-oxazines using a chiral BOX ligand. However, this method is limited to aminotrifluoromethylation reaction as other perfluoroalkyl substituted hypervalent iodine reagents are not easily accessible. Herein, we report our recent research results on the synthesis of perfluoroalkyl substituted 1, 3-oxazines using commercial available perfluoroalkyl iodides as perfluoroalkyl source. This intramolecular aminoperfluoroalkylation reaction proceeds selectively in the presence of Cu(OAc)2 catalyst, 1, 10-phenanthroline ligand and AgOAc additive. A broad range of O-homoallyl benzimidates and perfluoroalkyl iodides are compatible with the reaction conditions, affording perfluoroalkyl substituted 1, 3-oxazines in moderate to good yields. The 1, 3-oxazine product can be prepared in gram scale and readily hydrolyzed under mild conditions to give perfluoroalkyl substituted 1, 3-amino alcohols. Preliminary mechanism studies revealed that this intramolecular aminoperfluoroalkylation reaction initiated with the addition of a perfluoroalkyl radical to the terminal alkene, and the subsequent functionalization with the benzimidate motif via intramolecular substitution generated 1, 3-oxazine products.
  • 加载中
    1. [1]

      Hu, J.; Ding, K. Acta Chim. Sinica 2018, 76, 905(in Chinese).  doi: 10.3969/j.issn.0253-2409.2018.08.002
       

    2. [2]

      (a) Smart, B. E. J. Flurorine Chem. 2001, 109, 3; (b) Hagmann, W. K. J. Med. Chem. 2008, 51, 4359; (c) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320; (d) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.; Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Chem. Rev. 2016, 116, 422.

    3. [3]

      (a) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014, 57, 10257; (b) Meyer, F. Chem. Commun. 2016, 52, 3077.

    4. [4]

      Tian, Y.; Chen, S.; Gu, Q.-S.; Lin, J.-S.; Liu, X.-Y. Tetrahedron Lett. 2018, 59, 203.  doi: 10.1016/j.tetlet.2017.12.034

    5. [5]

      (a) Takamasa, F.; Yoshiko, S.; Hisao, U. Chem. Lett. 1987, 16, 521; (b) Kim, E.; Choi, S.; Kim, H.; Cho, E. J. Chem.-Eur. J. 2013, 19, 6209; (c) Matcha, K.; Antonchick, A. P. Angew. Chem., Int. Ed. 2014, 53, 11960; (d) Wei, Q.; Chen, J.-R.; Hu, X.-Q.; Yang, X.-C.; Lu, B.; Xiao, W.-J. Org. Lett. 2015, 17, 4464; (e) Jarrige, L.; Carboni, A.; Dagousset, G.; Levitre, G.; Magnier, E.; Masson, G. Org. Lett. 2016, 18, 2906.

    6. [6]

      For copper catalyzed intramolecular aminoperfuoroalkylation, see: (a) Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem., Int. Ed. 2013, 52, 7841; (b) Kawamura, S.; Egami, H.; Sodeoka, M. J. Am. Chem. Soc. 2015, 137, 4865; (c) Kawamura, S.; Dosei, K.; Valverde, E.; Ushida, K.; Sodeoka, M. J. Org. Chem. 2017, 82, 12539; (d) Lin, J.-S.; Liu, X.-G.; Zhu, X.-L.; Tan, B.; Liu, X.-Y. J. Org. Chem. 2014, 79, 7084; (e) Lin, J.-S.; Xiong, Y.-P.; Ma, C.-L.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Chem.-Eur. J. 2014, 20, 1332; (f) Li, X.-F.; Lin, J.-S.; Liu, X.-Y. Synthesis 2017, 49, 4213; (g) Shen, K.; Wang, Q. Org. Chem. Front. 2016, 3, 222; (h) Yu, L.-Z.; Wei, Y.; Shi, M. Chem. Commun. 2016, 52, 13163; (i) Zhang, H.-Y.; Huo, W.; Ge, C.; Zhao, J.; Zhang, Y. Synlett 2017, 28, 962; (j) Chang, B.; Su, Y.; Huang, D.; Wang, K.-H.; Zhang, W.; Shi, Y.; Zhang, X.; Hu, Y. J. Org. Chem. 2018, 83, 4365.

    7. [7]

      For enantioselective aminotrifluoromethylation of alkene, see: (a) Lin, J.-S.; Dong, X.-Y.; Li, T.-T.; Jiang, N.-C.; Tan, B.; Liu, X.-Y. J. Am. Chem. Soc. 2016, 138, 9357; (b) Lin, J.-S.; Wang, F.-L.; Dong, X.-Y.; He, W.-W.; Yuan, Y.; Chen, S.; Liu, X.-Y. Nat. Commun. 2017, 8, 14841.

    8. [8]

      For recent examples of using imidates as nucleophile, see: (a) Brindle, C. S.; Yeung, C. S.; Jacobsen, E. N. Chem. Sci. 2013, 4, 2100; (b) Zhu, R.; Yu, K.; Gu, Z. Org. Biomol. Chem. 2014, 12, 6653.

    9. [9]

      Mou, X.-Q.; Chen, X.-Y.; Chen, G.; He, G. Chem. Commun. 2018, 54, 515.  doi: 10.1039/C7CC08897C

    10. [10]

      For selected examples of intramolecular C-H amination of imidates by other groups, see: (a) Wappes, E. A.; Nakafuku, K. M.; Nagib, D. A. J. Am. Chem. Soc. 2017, 139, 10204; (b) Stateman, L. M.; Wappes, E. A.; Nakafuku, K. M.; Edwards, K. M.; Nagib, D. A. Chem. Sci. 2019, 10, 2693; (c) Shaw, M.; Kumar, A. Org. Lett. 2019, 21, 3108.

    11. [11]

      Mou, X.-Q.; Rong, F.-M.; Zhang, H.; Chen, G.; He, G. Org. Lett. 2019, 21, 4657.  doi: 10.1021/acs.orglett.9b01552

    12. [12]

      (a) Eisenberger, P.; Gischig, S.; Togni, A. Chem.-Eur. J. 2006, 12, 2579; (b) Matoušek, V.; Pietrasiak, E.; Schwenk, R.; Togni, A. J. Org. Chem. 2013, 78, 6763; (c) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.

    13. [13]

    14. [14]

    15. [15]

      For selected examples of perfluoroalkylation of aromatic compounds with perfluoroalkyl iodides, see (a) Iqbal, N.; Choi, S.; Ko, E.; Cho, E. J. Tetrahedron Lett. 2012, 53, 2005; (b) Barata-Vallejo, S.; Flesia, M. M.; Lanta o, B.; Argüello, J. E.; Pe é ory, A. B.; Postigo, A. Eur. J. Org. Chem. 2013, 2013, 998; (c) Straathof, N. J. W.; Gemoets, H. P. L.; Wang, X.; Schouten, J. C.; Hessel, V.; No l, T. ChemSusChem 2014, 7, 1612; (d) Huang, Y.; Lei, Y.-Y.; Zhao, L.; Gu, J.; Yao, Q.; Wang, Z.; Li, X.-F.; Zhang, X.; He, C.-Y. Chem. Commun. 2018, 54, 13662; (e) Yerien, D. E.; Cooke, M. V.; García Vior, M. C.; Barata-Vallejo, S.; Postigo, A. Org. Biomol. Chem. 2019, 17, 3741.

    16. [16]

      For selected examples of perfluoroalkylation of alkene with perfluoroalkyl iodides under visible light irradiation, see (a) Brace, N. O. J. Org. Chem. 1963, 28, 3093; (b) Habib, M. H.; Mallouk, T. E. J. Flurorine Chem. 1991, 53, 53; (c) Ogawa, A.; Imura, M.; Kamada, N.; Hirao, T. Tetrahedron Lett. 2001, 42, 2489; (d) Tsuchii, K.; Imura, M.; Kamada, N.; Hirao, T.; Ogawa, A. J. Org. Chem. 2004, 69, 6658; (e) Wallentin, C.-J.; Nguyen, J. D.; Finkbeiner, P.; Stephenson, C. R. J. J. Am. Chem. Soc. 2012, 134, 8875; (f) Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O'Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V. J. Am. Chem. Soc. 2013, 135, 2505; (g) Wang, Y.; Wang, J.; Li, G.-X.; He, G.; Chen, G. Org. Lett. 2017, 19, 1442; (h) Beniazza, R.; Remisse, L.; Jardel, D.; Lastécouères, D.; Vincent, J.-M. Chem. Commun. 2018, 54, 7451; (j) Rawner, T.; Lutsker, E.; Kaiser, C. A.; Reiser, O. ACS Catal. 2018, 8, 3950.

    17. [17]

      For selected examples of transition metal catalyzed perfluoroalkylation of alkene with perfluoroalkyl iodides, see: (a) Gil-Rubio, J.; Guerrero-Leal, J.; Blaya, M.; Vicente, J.; Bautista, D.; Jones, P. G. Organometallics 2012, 31, 1287; (b) Blaya, M.; Bautista, D.; Gil-Rubio, J.; Vicente, J. Organometallics 2017, 36, 1245; (c) Zheng, J.; Chen, P.; Yuan, Y.; Cheng, J. J. Org. Chem. 2017, 82, 5790.

    18. [18]

      For selected reviews on the synthesis and application of 1, 3-oxazines, see: (a) Schmidt, R. R. Synthesis 1972, 1972, 333; (b) Sato, M.; Sunami, S.; Kaneko, C. Heterocycles 1996, 42, 861.

    19. [19]

      In the reaction of O-homoallyl benzimidates equipped with multi-substituted alkene and trichloroacetimidate analogue of 1, no desired product was detected, and most of the starting material remain unconsumed.

  • 加载中
    1. [1]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    2. [2]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    13. [13]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    14. [14]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    17. [17]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    20. [20]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

Metrics
  • PDF Downloads(7)
  • Abstract views(929)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return