Citation: Cheng Shijie, Zeng Yang, Pei Yan, Fan Kangnian, Qiao Minghua, Zong Baoning. Synthesis and Catalysis of Pt/W-s-SBA-15 Catalysts with Short Channel for Glycerol Hydrogenolysis to 1, 3-Propanediol[J]. Acta Chimica Sinica, ;2019, 77(10): 1054-1062. doi: 10.6023/A19060219 shu

Synthesis and Catalysis of Pt/W-s-SBA-15 Catalysts with Short Channel for Glycerol Hydrogenolysis to 1, 3-Propanediol

  • Corresponding author: Qiao Minghua, mhqiao@fudan.edu.cn Zong Baoning, zongbn.ripp@sinopec.com
  • Received Date: 18 June 2019
    Available Online: 6 October 2019

    Fund Project: Project supported by the National Key Research and Development Project of China (No. 2016YFB0301602), the National Natural Science Foundation of China (No. 21872035), Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500), and State Key Laboratory of Catalytic Materials and Reaction Engineering (RIPP, SINOPEC)the National Natural Science Foundation of China 21872035Science and Technology Commission of Shanghai Municipality 08DZ2270500the National Key Research and Development Project of China 2016YFB0301602

Figures(9)

  • The mesoporous SBA-15 molecular sieves doped in situ by W with channels parallel to the short axis (W-s-SBA-15) were synthesized by using decane as cosolvent and trimethylbenzene (TMB) as pore-expanding agent, which were used as the supports for the preparation of the Pt/W-s-SBA-15 catalysts. The effect of the loadings of Pt and W on the catalytic performance in glycerol hydrogenolysis to 1, 3-propanediol (1, 3-PDO) was investigated. The morphology, chemical states of Pt and W, and acidity of the catalysts were systematically characterized by using Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM), CO pulsed adsorption, X-ray photoelectron spectroscopy (XPS), Raman, ultraviolet-visible diffuse reflectance spectra (UV-Vis DRS), Fourier transform infrared spectroscopy (FT-IR) and FT-IR of adsorbed pyridine analysis (Py-IR). The BET and TEM results revealed that there are two kinds of pores in the structure:the mesoporous channels parallel to the short axis and honeycomb-like macropores. The Pt dispersion and active surface area calculated from CO chemical adsorption, firstly increased and then decreased with the increase in the Pt and W loadings. The highly dispersed tungsten species were assigned to the single-site WO4 on the basis of the characterization results of Raman, UV-Vis DRS, and FT-IR. The XPS results indicated that the amount of the Pt-O-Si/W linkages and the Ptδ+/(Pt0+Ptδ+) ratio are the highest on the 4Pt/W-s-SBA-15(1/480) catalyst which promote the dispersion of the Pt particles on the catalyst surface. With the increase in the loadings of Pt and W, the conversion of glycerol and the conversion of glycerol to liquid products (CTL) increased monotonically, while the selectivity to 1, 3-PDO experienced a volcanic-type evolution. At the reaction temperature of 433 K, H2 pressure of 4.0 MPa, and reaction time of 24 h, the highest yield of 1, 3-PDO of 49.0% was resulted on the 4Pt/W-s-SBA-15(1/480) catalyst. It is identified that the conversion of glycerol on the Pt/W-s-SBA-15 catalysts is proportional to the active surface area of Pt on the catalyst, while the small Pt particle size and the strong synergy between Pt and the highly dispersed WO4 species are advantageous to the formation of 1, 3-PDO.
  • 加载中
    1. [1]

      Sun, Q. M.; Wang, C. H.; Wang, L. M.; Zhang, L.; Fan, Y. C. Chem. Ind. Eng. Prog. 2017, 36, 161.
       

    2. [2]

      Ding, S.; Ge, Q. F.; Zhu, X. L. Acta Chim. Sinica 2017, 75, 29.  doi: 10.3969/j.issn.0253-2409.2017.01.005
       

    3. [3]

      Zhou, C. H.; Beltramini, J. N.; Fan, Y. X.; Lu, G. Q. Chem. Soc. Rev. 2008, 37, 527.  doi: 10.1039/B707343G

    4. [4]

      Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F. Green Chem. 2008, 10, 13.  doi: 10.1039/B710561D

    5. [5]

      Nimlos, M. R.; Blanksby, S. J.; Qian, X.; Himmel, M. E. J. Phys. Chem. A 2006, 110, 6145.  doi: 10.1021/jp060597q

    6. [6]

      Qin, L. Z.; Song, M. J.; Chen, C. L. Green Chem. 2010, 12, 1466.  doi: 10.1039/c0gc00005a

    7. [7]

      Zhu, S. H.; Zhu, Y. L.; Hao, S. L.; Zheng, H. Y.; Mo, T.; Li, Y. W. Green Chem. 2012, 14, 2607.  doi: 10.1039/c2gc35564g

    8. [8]

      Zhou, W.; Zhao, Y. J.; Wang, Y.; Wang, S. P. ChemCatChem 2016, 8, 3663.  doi: 10.1002/cctc.201600981

    9. [9]

      García-Fernández, S.; Gandarias, I.; Requies, J.; Güemez, M. B.; Bennici, S.; Auroux, A.; Arias, P. L. J. Catal. 2015, 323, 65.  doi: 10.1016/j.jcat.2014.12.028

    10. [10]

      Racha, A.; Tomoo, M.; Takato, M.; Koichiro, J.; Kiyotomi, K. ChemSusChem 2013, 6, 1345.  doi: 10.1002/cssc.201300196

    11. [11]

      Gong, L. F.; Yuan, L.; Ding, Y. J.; Lin, R. H.; Li, J. W.; Dong, W. D.; Tao, W.; Chen, W. M. Appl. Catal., A 2010, 390, 119.  doi: 10.1016/j.apcata.2010.10.002

    12. [12]

      Wang, J.; Zhao, X. C.; Wang, A. Q.; Zhang, T. ChemSusChem 2016, 9, 784.  doi: 10.1002/cssc.201501506

    13. [13]

      Zhao, X. C.; Wang, J.; Zhang, T.; Yang, M.; Lei, N.; Li, L.; Hou, B.; Miao, S.; Pan, X.; Wang, A. ChemSusChem 2016, 10, 819.

    14. [14]

      Feng, A. H.; Yu, Y.; Yu, Y.; Song, L. X. Acta Chim. Sinica 2018, 76, 27.  doi: 10.3969/j.issn.0253-2409.2018.01.004
       

    15. [15]

      Shi, G. J.; Xu, J. Y.; Song, Z. G.; Cao, Z.; Jin, K.; Xu, S. H.; Yan, X. T. Mol. Catal. 2018, 456, 22.  doi: 10.1016/j.mcat.2018.06.018

    16. [16]

      Wang, F.; Li, J. S.; Yuan, J. F.; Sun, X. Y.; Shen, J. Y.; Han, W. Q.; Wang, L. J. Catal. Commun. 2011, 12, 1415.  doi: 10.1016/j.catcom.2011.05.021

    17. [17]

      Zhu, J. L.; Wang, T.; Xu, X. L.; Xiao, P. Appl. Catal., B 2013, 130, 197.

    18. [18]

      Gu, M. Y.; Dong, W. J.; Peng, B. Y.; Long, Y.; Zheng, S.; Zhang, W.; Zhang, Y. L. Ind. Eng. Chem. Res. 2017, 56, 13572.  doi: 10.1021/acs.iecr.7b02899

    19. [19]

      Priya, S. S.; Kumar, V. P.; Kantam, M. L.; Bhargava, S. K.; Srikanth, A.; Chary, K. V. R. Ind. Eng. Chem. Res. 2015, 54, 9104.  doi: 10.1021/acs.iecr.5b01814

    20. [20]

      Fan, Y. Q.; Cheng, S. J.; Wang, H.; Ye, D. H.; Xie, S. H.; Pei, Y.; Hu, H. R.; Li, Z. H.; Hua, W. M.; Qiao, M. H. Green Chem. 2017, 19, 2174.  doi: 10.1039/C7GC00317J

    21. [21]

      Feng, S. H.; Zhao, B. b.; Liu, L.; Dong, J. X.; Feng, S. H.; Zhao, B. B.; Liu, L.; Dong, J. X. Ind. Eng. Chem. Res. 2017, 56, 11065.  doi: 10.1021/acs.iecr.7b02951

    22. [22]

      Zhang, H.; Sun, J. M.; Ma, D.; Bao, X. H.; Klein-Hoffmann, A.; Weinberg, G.; Su, D. S.; Schlögl, R. J. Am. Chem. Soc. 2004, 126, 7440.  doi: 10.1021/ja048630e

    23. [23]

      Everett, D. H. Pure Appl. Chem. 1972, 31, 578.

    24. [24]

      Kruk, M.; Jaroniec, M. Chem. Mater. 2001, 13, 3169.  doi: 10.1021/cm0101069

    25. [25]

      Liu, J. L.; Zhu, L. J.; Pei, Y.; Zhuang, J. H.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Appl. Catal., A 2009, 353, 282.  doi: 10.1016/j.apcata.2008.10.056

    26. [26]

      Chen, X. Y.; Lou, Z. Y.; Qiao, M. H.; Fan, K. N.; Tsang, S. C.; He, H. Y. J. Phys. Chem. C 2008, 112, 1316.  doi: 10.1021/jp710962p

    27. [27]

      Nie, Y. Y.; Shang, S. N.; Xin, X.; Hua, W. M.; Yue, Y. H.; Gao, Z. Appl. Catal., A 2012, 433-434, 69.  doi: 10.1016/j.apcata.2012.04.040

    28. [28]

      Yasutaka, N.; Takeshi, H.; Kazuhiko, D.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S. I. J. Catal. 2006, 242, 103.  doi: 10.1016/j.jcat.2006.06.002

    29. [29]

      Zhang, Z. Y.; Zhu, Q. J.; Ding, J.; Dai, W. L.; Zong, B. N. Acta Phys. Chim. Sinica 2014, 30, 1527.  doi: 10.3866/PKU.WHXB201406121

    30. [30]

      Lwin, S.; Li, Y. Y.; Frenkel, A. I.; Wachs, I. E. ACS Catal. 2016, 6, 3061.  doi: 10.1021/acscatal.6b00389

    31. [31]

      Stein, A.; Fendorf, M.; Jarvie, T. P.; Mueller, K. T.; Benesi, A. J.; Mallouk, T. E. Chem. Mater. 1995, 7, 304.  doi: 10.1021/cm00050a012

    32. [32]

      Weber, R. S. J. Catal. 1995, 151, 470.  doi: 10.1006/jcat.1995.1052

    33. [33]

      Briot, E.; Piquemal, J. Y.; Vennat, M.; Brégeault, J. M.; Chottard, G.; Manoli, J. M. J. Mater. Chem. 2000, 10, 953.  doi: 10.1039/a908428b

    34. [34]

      Klepel, O.; Böhlmann, W.; Ivanov, E. B.; Riede, V.; Papp, H. Microporous Mesoporous Mater. 2004, 76, 105.  doi: 10.1016/j.micromeso.2004.07.038

    35. [35]

      Hu, B.; Liu, H.; Tao, K.; Xiong, C. R.; Zhou, S. H. J. Phys. Chem. C 2013, 117, 26385.  doi: 10.1021/jp4098028

    36. [36]

      Hu, J. C.; Wang, Y. D.; Chen, L. F. Microporous Mesoporous Mater. 2006, 93, 158.  doi: 10.1016/j.micromeso.2006.02.019

    37. [37]

      Iglesia, E.; Barton, D. G.; Soled, S. L.; Miseo, S.; Baumgartner, J. E.; Gates, W. E.; Fuentes, G. A.; Meitzner, G. D. Stud. Surf. Sci. Catal 1996, 101, 533.  doi: 10.1016/S0167-2991(96)80264-3

    38. [38]

      Wu, P.; Tatsumi, T.; Komatsu, T.; Yashima, T. J. Catal. 2001, 202, 245.  doi: 10.1006/jcat.2001.3278

    39. [39]

      Rada, S.; Rada, M.; Culea, E. J. Alloys Compd. 2013, 552, 10.  doi: 10.1016/j.jallcom.2012.10.061

    40. [40]

      Bal, R.; Ghosh, S.; Acharyya, S. S.; Sasaki, T. Green Chem. 2015, 17, 1867.  doi: 10.1039/C4GC02123A

    41. [41]

      Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Zhu, Y. F.; Xiang, X. M.; Hu, C. X.; Li, Y. W. Appl. Catal., B 2013, 140-141, 60.  doi: 10.1016/j.apcatb.2013.03.041

    42. [42]

      Zhu, S. H.; Gao, X. Q.; Zhu, Y. L.; Li, Y. W. J. Mol. Catal. A 2015, 398, 391.  doi: 10.1016/j.molcata.2014.12.021

    43. [43]

      Massa, A.; Andersson, M.; Finoccino, E.; Busca, G. J. Catal. 2013, 297, 93.  doi: 10.1016/j.jcat.2012.09.021

    44. [44]

      Galano, A.; Rodriguez-Gattorno, G.; Torres-García, E. Phys. Chem. Chem. Phys. 2008, 10, 4181.  doi: 10.1039/b802934b

    45. [45]

      Parry, E. P. J. Catal. 1963, 2, 371.  doi: 10.1016/0021-9517(63)90102-7

    46. [46]

      Onfroy, T.; Clet, G.; Houalla, M. Microporous Mesoporous Mater. 2005, 82, 99.  doi: 10.1016/j.micromeso.2005.02.020

    47. [47]

      Emeis, C. A. J. Catal. 1993, 141, 347.  doi: 10.1006/jcat.1993.1145

    48. [48]

      Schmidt-Winkel, P.; Lukens, W. W.; Yang, P. D.; Margolese, D. I.; Lettow, J. S.; Ying, J. Y.; Stucky, G. D. Chem. Mater. 2000, 12, 686.  doi: 10.1021/cm991097v

    49. [49]

      Kurosaka, T.; Maruyama, H.; Naribayashi, I.; Sasaki, Y. Catal. Commun. 2008, 9, 1360.  doi: 10.1016/j.catcom.2007.11.034

    50. [50]

      Takasu, Y.; Teramoto, M.; Matsuda, Y. J. Chem. Soc. Chem. Commun. 1983, 22, 1329.

    51. [51]

      Wang, L.; Stuckert, N. R.; Chen, H.; Yang, R. T. J. Phys. Chem. C 2011, 115, 4793.  doi: 10.1021/jp111800c

  • 加载中
    1. [1]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    2. [2]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    5. [5]

      Juan GuoMingyuan FangQingsong LiuXiao RenYongqiang QiaoMingju ChaoErjun LiangQilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957

    6. [6]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Rong-Nan YiWei-Min He . Photocatalytic Minisci-type multicomponent reaction for the synthesis of 1-(halo)alkyl-3-heteroaryl bicyclo[1.1.1]pentanes. Chinese Chemical Letters, 2024, 35(10): 110115-. doi: 10.1016/j.cclet.2024.110115

    12. [12]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    13. [13]

      Runze Liu Yankai Bian Weili Dai . Qualitative and quantitative analysis of Brønsted and Lewis acid sites in zeolites: A combined probe-assisted 1H MAS NMR and NH3-TPD investigation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100250-100250. doi: 10.1016/j.cjsc.2024.100250

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    19. [19]

      Jun-Jie FangZheng LiuYun-Peng XieXing Lu . Superatomic Ag58 nanoclusters incorporating a [MS4@Ag12]2+ (M = Mo or W) kernel show aggregation-induced emission. Chinese Chemical Letters, 2024, 35(10): 109345-. doi: 10.1016/j.cclet.2023.109345

    20. [20]

      Wujun JianMong-Feng ChiouYajun LiHongli BaoSong Yang . Cu-catalyzed regioselective diborylation of 1,3-enynes for the efficient synthesis of 1,4-diborylated allenes. Chinese Chemical Letters, 2024, 35(5): 108980-. doi: 10.1016/j.cclet.2023.108980

Metrics
  • PDF Downloads(9)
  • Abstract views(1476)
  • HTML views(110)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return