Citation: Wu Yi-Peng, Wang Ze-Kun, Wang Hui, Zhang Dan-Wei, Zhao Xin, Li Zhan-Ting. Self-Assembly of a Highly Fluorescent Three-Dimensional Supramolecular Organic Framework and Selective Sensing for Picric Acid[J]. Acta Chimica Sinica, ;2019, 77(8): 735-740. doi: 10.6023/A19060214 shu

Self-Assembly of a Highly Fluorescent Three-Dimensional Supramolecular Organic Framework and Selective Sensing for Picric Acid

  • Corresponding author: Zhao Xin, xzhao@sioc.ac.cn Li Zhan-Ting, ztli@fudan.edu.cn
  • Received Date: 15 June 2019
    Available Online: 28 August 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21432004, 21890732)the National Natural Science Foundation of China 21890732the National Natural Science Foundation of China 21432004

Figures(8)

  • Cucurbit[8]uril (CB[8])-encapsulation-based host-guest chemistry has been utilized to construct supramolecular organic frameworks, a family of water-soluble, self-assembled periodic porous structures, from multi-armed preorganized building blocks. The tetrahedral prototype building block has been incorporated with four CH2 units to connect the central tetraphenylmethane and appended aromatic arms. Herein we designed and prepared a new fully conjugated tetrahedral building block T-1, which possesses four N-methyl 4-(4-styrylphenyl)pyridinium (SPP) arms. The 1:2 mixture of T-1 with CB[8] in water leads to the formation of a new three-dimensional homogeneous diamondoid supramolecular organic framework SOF-r-SPP through CB[8] encapsulation for intermolecular dimers of the appended SPP units. 1H NMR, absorption and fluorescence experiments conformed strong binding between the two components at diluted concentrations and 1:2 binding stoichiometry. Isothermal calorimetric (ITC) experiments established that the three-component (SPP)2ÌCB[8] complexes formed between the SPP units of T-1 and CB[8] had an apparent binding constant of 5.5×1013 M-2, which was 5.5×104 times as high as that of the complex of a SPP control. ITC experiments also revealed that the self-assembly of SOF-r-SPP are driven both enthalpically and entropically, but the enthalpic contribution was overwhelmingly higher. Dynamic light scattering experiments revealed that within the concentration range of 0.031 mmol/L to 1.0 mmol/L of T-1, the framework possessed a hydrodynamic diameter of 41 nm to 68 nm. Molecular modelling study indicated that the new regular framework formed an aperture of 2.3 nm. Although T-1 has nearly no fluorescence, SOF-r-SPP exhibits strong fluorescence in water probably due to the encapsulation of the SPP dimers by CB[8] that suppresses the relative rotation of the aromatic rings. Adding nitrobenzene or naphthalene derivatives to the solution of SOF-r-SPP remarkably quenched the fluorescence of the framework. Among other sixteen nitro-bearing aromatic molecules, picric acid (2, 4, 6-trinitrophenol) exhibited the largest quenching ability. At the low concentration of 1.0 μmol/L for T-1 of SOF-r-SPP, 0.1 μmol/L of 2, 4, 6-tirnitrophenol could cause 16% quenching of the fluorescence of SOF-r-SPP and 0.1 mmol/L of 2, 4, 6-tirnitrophenol could realize nearly complete quench (>97%). Following a reported method, the limit of detection of SOF-r-SPP for picric acid was as low as 0.024 μmol/L.
  • 加载中
    1. [1]

      Lehn, J.-M. Polym. Int. 2002, 51, 825.  doi: 10.1002/pi.852

    2. [2]

      Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071.  doi: 10.1021/cr990125q

    3. [3]

      Xu, J.-F.; Zhang, X. Acta Polym. Sin. 2017, 37(in Chinese).  doi: 10.11777/j.issn1000-3304.2017.16262

    4. [4]

      Wang, Q.; Cheng, M.; Jiang, J.-L.; Wang, L.-Y. Chin. Chem. Lett. 2017, 28, 793.  doi: 10.1016/j.cclet.2017.02.008

    5. [5]

      Ding, Z.; Li, H.; Gao, W.; Zhang, Y.; Liu, C.; Zhu, Y. Chin. J. Chem. 2017, 35, 447.  doi: 10.1002/cjoc.201600885

    6. [6]

      Zhao, Q.; Chen, Y.; Liu, Y. Chin. Chem. Lett. 2018, 29, 84.  doi: 10.1016/j.cclet.2017.07.024

    7. [7]

      Wang, J.; Zou, Q.; Yan, X. Acta Chim. Sinica 2017, 75, 933(in Chinese).
       

    8. [8]

      Zheng, X.; Miao, Q.; Wang, W.; Qu, D.-H. Chin. Chem. Lett. 2018, 29, 1621.  doi: 10.1016/j.cclet.2018.04.002

    9. [9]

      Ji, S.; Xu, H. Sci. China Chem. 2019, 62, 155.  doi: 10.1007/s11426-018-9352-x

    10. [10]

      Wang, X.; Yang, Y.; Fan, L.; Yang, F.; Wu, D. Sci. China Chem. 2018, 61, 311.

    11. [11]

      Xu, C.; Xu, L.; Ma, X. Chin. Chem. Lett. 2018, 29, 970.  doi: 10.1016/j.cclet.2017.11.045

    12. [12]

      Yin, G.; Chen, L.; Wang, C.; Yang, H. Chin. J. Chem. 2018, 36, 134.  doi: 10.1002/cjoc.201700610

    13. [13]

      Chen, Y.; Sun, S.; Lu, D.; Shi, Y.; Yao, Y. Chin. Chem. Lett. 2019, 30, 37.  doi: 10.1016/j.cclet.2018.10.022

    14. [14]

      Ma, L.; Peng, H.; Lu, X.; Liu, L.; Shao, X. Chin. J. Chem. 2018, 36, 845.  doi: 10.1002/cjoc.201800215

    15. [15]

      Albertazzi, L.; Martinez-Veracoechea, F. J.; Leenders, C. M. A.; Voets, I. K.; Meijer, E. W. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, 12203.  doi: 10.1073/pnas.1303109110

    16. [16]

      Fang, R.; Liu, Y.; Wang, Z.; Zhang, X. Polym. Chem. 2013, 4, 900.  doi: 10.1039/c2py21037a

    17. [17]

      Xiao, X.; Sun, J.; Jiang, J. Chem. Eur. J. 2013, 19, 16891.  doi: 10.1002/chem.201303530

    18. [18]

      Liu, Y.; Huang, Z.; Liu, K.; Kelgtermans, H.; Dehaen, W.; Wang, Z.; Zhang, X. Polym. Chem. 2014, 5, 53.  doi: 10.1039/C3PY01036H

    19. [19]

      Li, C.; Han, K.; Li, J.; Zhang, Y.; Chen, W.; Yu, Y.; Jia, X. Chem. Eur. J. 2013, 19, 11892.  doi: 10.1002/chem.201301022

    20. [20]

      Pfeffermann, M.; Dong, R.; Graf, R.; Zajaczkowski, W.; Gorelik, T.; Pisula, W.; Narita, A.; Muellen, K.; Feng, X. J. Am. Chem. Soc. 2015, 137, 14525.  doi: 10.1021/jacs.5b09638

    21. [21]

      Li, Y.; Dong, Y.; Miao, X.; Ren, Y.; Zhang, B.; Wang, P.; Yu, Y.; Li, B.; Isaacs, L.; Cao, L. Angew. Chem. Int. Ed. 2018, 57, 729.  doi: 10.1002/anie.201710553

    22. [22]

      Lee, H.-J.; Kim, H.-J.; Lee, E.-C.; Kim, J.; Park, S. Y. Chem. Asian J. 2018, 13, 390.  doi: 10.1002/asia.201800020

    23. [23]

      Liu, H.; Zhang, Z.; Zhao, Y.; Zhou, Y.; Xue, B.; Han, Y.; Wang, Y.; Mu, X.; Zang, S.; Zhou, X.; Li, Z. J. Mater. Chem. B 2019, 7, 1435.

    24. [24]

      Lin, Q.; Fan, Y.-Q.; Mao, P.-P.; Liu, L.; Liu, J.; Zhang, Y.-M.; Yao, H.; Wei, T.-B. Chem. Eur. J. 2018, 24, 777.  doi: 10.1002/chem.201705107

    25. [25]

      Zhang, K.-D.; Tian, J.; Hanifi, D.; Zhang, Y.; Sue, A. C.-H.; Zhou, T.-Y.; Zhang, L.; Zhao, X.; Liu, Y.; Li, Z.-T. J. Am. Chem. Soc. 2013, 135, 17913.  doi: 10.1021/ja4086935

    26. [26]

      Xu, S.-Q.; Zhang, X.; Nie, C.-B.; Pang, Z.-F.; Xu, X.-N.; Zhao, X. Chem. Commun. 2015, 51, 16417.  doi: 10.1039/C5CC05875A

    27. [27]

      Wang, H.; Zhang, D.-W.; Zhao, X.; Li, Z.-T. Acta Chim. Sinica 2015, 73, 471(in Chinese).
       

    28. [28]

      Tian, J.; Chen, L.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Commun. 2016, 52, 6351.  doi: 10.1039/C6CC02331B

    29. [29]

      Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Natl. Sci. Rev. 2017, 4, 426.  doi: 10.1093/nsr/nwx030

    30. [30]

      Zhao, Y.-K.; Gao, Z.-Z.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Chin. Chem. Lett. 2019, 30, 127.  doi: 10.1016/j.cclet.2018.10.016

    31. [31]

      Mulder, A.; Huskens, J.; Reinhoudt, D. N. Org. Biomol. Chem. 2004, 2, 3409.  doi: 10.1039/b413971b

    32. [32]

      Badjic, J. D.; Nelson, A.; Cantrill, S. J.; Turnbull, W. B.; Stoddart, J. F. Acc. Chem. Res. 2005, 38, 723.  doi: 10.1021/ar040223k

    33. [33]

      Fasting, C.; Schalley, C. A.; Weber, M.; Seitz, O.; Hecht, S.; Koksch, B.; Dernedde, J.; Graf, C.; Knapp, E.-W.; Haag, R. Angew. Chem. Int. Ed. 2012, 51, 10472.  doi: 10.1002/anie.201201114

    34. [34]

      Pieters, R. J. Org. Biomol. Chem. 2009, 7, 2013.  doi: 10.1039/b901828j

    35. [35]

      Mahon, E.; Barboiu, M. Org. Biomol. Chem. 2015, 13, 10590.  doi: 10.1039/C5OB01357G

    36. [36]

      Cao, L.; Wang, T.; Wang, C. Chin. J. Chem. 2018, 36, 754.  doi: 10.1002/cjoc.201800144

    37. [37]

      Zhang, H.; Li, G.; Zhang, K.; Liao, C. Acta Chim. Sinica 2017, 75, 841(in Chinese).
       

    38. [38]

      Yang, T.; Cui, Y.; Chen, H.; Li, W. Acta Chim. Sinica 2017, 75, 339(in Chinese).
       

    39. [39]

      Wang, Y.; Yang, Q.; Su, B. Acta Chim. Sinica 2017, 75, 1071(in Chinese).  doi: 10.3866/PKU.WHXB201704061
       

    40. [40]

      Liang, R.-R.; Zhao, X. Org. Chem. Front. 2018, 5, 3341.  doi: 10.1039/C8QO00830B

    41. [41]

      Yuan, F.; Tan, J.; Guo, J. Sci. China Chem. 2018, 61, 143.  doi: 10.1007/s11426-017-9162-3

    42. [42]

      Sun, B.; Wang, D.; Wan, L. Sci. China Chem. 2017, 60, 1098.

    43. [43]

      Wu, M.-X.; Yang, Y.-W. Chin. Chem. Lett. 2017, 28, 1135.  doi: 10.1016/j.cclet.2017.03.026

    44. [44]

      Lin, R.-B.; He, Y.; Li, P.; Wang, H.; Zhou, W.; Chen, B. Chem. Soc. Rev. 2019, 48, 1362.  doi: 10.1039/C8CS00155C

    45. [45]

      Tian, J.; Zhou, T.-Y.; Zhang, S.-C.; Aloni, S.; Altoe, M. V.; Xie, S.-H.; Wang, H.; Zhang, D.-W.; Zhao, X.; Liu, Y.; Li, Z.-T. Nat. Commun. 2014, 5, 5574.  doi: 10.1038/ncomms6574

    46. [46]

      Tian, J.; Yao, C.; Yang, W.-L.; Zhang, L.; Zhang, D.-W.; Wang, H.; Zhang, F.; Liu, Y.; Li, Z.-T. Chin. Chem. Lett. 2017, 28, 798.  doi: 10.1016/j.cclet.2017.01.010

    47. [47]

      Yao, C.; Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Zhang, F.; Li, Z.-T. Chin. Chem. Lett. 2017, 28, 893.  doi: 10.1016/j.cclet.2017.01.005

    48. [48]

      Wu, Y.-P.; Yang, B.; Tian, J.; Yu, S.-B.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Commun. 2017, 53, 13367.  doi: 10.1039/C7CC08824H

    49. [49]

      Yu, S.-B.; Qi, Q.; Yang, B.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Small 2018, 14, 1801037.  doi: 10.1002/smll.201801037

    50. [50]

      Yan, M.; Liu, X.-B.; Gao, Z.-Z.; Wu, Y.-P.; Hou, J.-L.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Org. Chem. Front. 2019, 6, 1698.  doi: 10.1039/C9QO00382G

    51. [51]

      Tian, J.; Xu, Z.-Y.; Zhang, D.-W.; Wang, H.; Xie, S.-H.; Xu, D.-W.; Ren, Y.-H.; Wang, H.; Liu, Y.; Li, Z.-T. Nat. Commun. 2016, 7, 11580.  doi: 10.1038/ncomms11580

    52. [52]

      Li, X.-F.; Yu, S.-B.; Yang, B.; Tian, J.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Sci. China Chem. 2018, 61, 830.  doi: 10.1007/s11426-018-9234-2

    53. [53]

      Chen, Y.; Huang, F.; Li, Z.-T.; Liu, Y. Sci. China Chem. 2018, 61, 979.  doi: 10.1007/s11426-018-9337-4

    54. [54]

      Tian, J.; Ding, Y.-D.; Zhou, T.-Y.; Zhang, K.-D.; Zhao, X.; Wang, H.; Zhang, D.-W.; Liu, Y.; Li, Z.-T. Chem. Eur. J. 2014, 20, 575.  doi: 10.1002/chem.201302951

    55. [55]

      Wagner, S.; Accorsi, M.; Rademann, J. Chem. Eur. J. 2017, 23, 15387.  doi: 10.1002/chem.201701204

    56. [56]

      Lee, J. W.; Samal, S.; Selvapalam, N.; Kim, H.-J.; Kim, K. Acc. Chem. Res. 2003, 36, 621.  doi: 10.1021/ar020254k

    57. [57]

      Zhang, Y.; Zhou, T.-Y.; Zhang, K.-D.; Dai, J.-L.; Zhu, Y.-Y.; Zhao, X. Chem. Asian J. 2014, 9, 1530.  doi: 10.1002/asia.201400006

    58. [58]

      Yang, B.; Yu, S.-B.; Wang, H.; Zhang, D.-W.; Li, Z.-T. Chem. Asian J. 2018, 13, 1312.  doi: 10.1002/asia.201701816

    59. [59]

      Yang, T. Y.; Wen, W.; Yin, G. Z.; Li, X. L.; Gao, M.; Gu, Y. L.; Li, L.; Liu, Y.; Lin, H.; Zhang, X. M.; Zhao, B.; Liu, T. K.; Yang, Y. G.; Li, Z.; Zhou, X. T.; Gao, X. Y. Nucl. Sci. Tech. 2015, 26, 020101.

    60. [60]

      Zeng, J.; Bian, F.; Wang, J.; Li, X.; Wang, Y.; Tian, F.; Zhou, P. J. Synchrotron Rad. 2017, 24, 509.  doi: 10.1107/S1600577516019135

    61. [61]

      He, Z.; Ke, C.; Tang, B. Z. ACS Omega 2018, 3, 3267.  doi: 10.1021/acsomega.8b00062

    62. [62]

      Qin, A.; Tang, B. Z. Sci. China Chem. 2018, 61, 879.  doi: 10.1007/s11426-018-9338-5

    63. [63]

      Zhang, Y.; Zhan, T.-G.; Zhou, T.-Y.; Qi, Q.-Y.; Xu, X.-N.; Zhao, X. Chem. Commun. 2016, 52, 7588.  doi: 10.1039/C6CC03631G

    64. [64]

      Yu, J.; Chen, Y.; Li, J.-J.; Liu, Y. J. Mater. Chem. C 2017, 5, 799.  doi: 10.1039/C6TC05121A

    65. [65]

      Wu, H.; Chen, Y.; Dai, X.; Li, P.; Stoddart, J. F.; Liu, Y. J. Am. Chem. Soc. 2019, 141, 6583.  doi: 10.1021/jacs.8b13675

    66. [66]

      Zhang, Y.; Shen, P.; He, B.; Luo, W.; Zhao, Z.; Tang, B. Z. Polym. Chem. 2018, 9, 558.  doi: 10.1039/C7PY01700F

    67. [67]

      Xiong, Z.; Wang, N.; Dai, M.; Li, A.; Chen, J.; Yang, Z. Org. Lett. 2004, 6, 3337.  doi: 10.1021/ol048749s

  • 加载中
    1. [1]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    2. [2]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    3. [3]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    4. [4]

      Ruikui YANXiaoli CHENMiao CAIJing RENHuali CUIHua YANGJijiang WANG . Design, synthesis, and fluorescence sensing performance of highly sensitive and multi-response lanthanide metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 834-848. doi: 10.11862/CJIC.20230301

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    8. [8]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    9. [9]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    15. [15]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    16. [16]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    17. [17]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    18. [18]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    19. [19]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    20. [20]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

Metrics
  • PDF Downloads(16)
  • Abstract views(742)
  • HTML views(144)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return