Citation: Yao Kun, Liu Hao, Yuan Qianjia, Liu Yangang, Liu Delong, Zhang Wanbin. Pd-Catalyzed Three-Component Chemospecific Allylic Substitution Cascade for the Synthesis of N-Carbonylmethylene-2-Pyridones[J]. Acta Chimica Sinica, ;2019, 77(10): 993-998. doi: 10.6023/A19060210 shu

Pd-Catalyzed Three-Component Chemospecific Allylic Substitution Cascade for the Synthesis of N-Carbonylmethylene-2-Pyridones

  • Corresponding author: Liu Delong, dlliu@sjtu.edu.cn Zhang Wanbin, wanbin@sjtu.edu.cn
  • Received Date: 13 June 2019
    Available Online: 14 October 2019

    Fund Project: the National Natural Science Foundation of China 21620102003Shanghai Municipal Education Commission 201701070002E00030the National Natural Science Foundation of China 21672142the National Natural Science Foundation of China 21971162the National Natural Science Foundation of China 21831005Project supported by the National Natural Science Foundation of China (Nos. 21971162, 21672142, 21620102003, 21831005) and Shanghai Municipal Education Commission (No. 201701070002E00030)

Figures(5)

  • Functionalized N-carbonylmethylene-2-pyridones are some of the most important structural motifs and exist in many natural products and bioactive compounds. Thus, the efficient construction of such skeletons has attracted much attention. Generally, the synthesis of N-carbonylmethylene-2-pyridones is realized via an intermolecular nucleophilic substitution of 2-hydroxypyridines and appropriate electrophiles. However, the above reactions often suffer from low yields caused by poor O/N chemoselectivities due to the dual nucleophilicity of the 2-hydroxypyridines. As far as the structure is concerned, N-carbonylmethylene-2-pyridones can be divided into three sections:a pyridone, a carbonylmethyl group and a side chain. When the side chain is a H atom, the N-substituted pyridones can be constructed conveniently via a reaction of 2-hydroxypyridines and primary α-bromocarbonyl compounds in high yields with excellent chemoselectivities. However, when the side chain is not a H atom, for example an alkyl group, only limited examples have been reported and only moderate yields of the desired N-substituted pyridine products are obtained by a combination of 2-hydroxypyridines and bulky secondary α-bromocarbonyl compounds, mainly due to the poor O/N chemoselectivities. To achieve a general synthetic pathway for the latter, the following practical strategy was designed. 2-Hydroxypyridines were first treated with primary α-bromocarbonyl compounds to generate the unique N-substituted intermediates in situ, which then reacted with the side chain electrophiles to give only the N-alkylated final products. Thus, a Pd-catalyzed three-component chemospecific allylic substitution cascade has been developed for the synthesis of N-carbonylmethylene-2-pyridone derivatives, with the desired products being obtained in up to 98% yield. No O-alkylated by-product was observed. The results suggested that the N-carbonylmethylene-2-pyridones are constructed via a cascade reaction consisting of a nucleophilic substitution followed by an allylic alkylation. The reaction was performed on a gram scale and the corresponding alkylated product was conveniently converted to a pyridone-containing unnatural amino acid. This methodology allows for the highly chemoselective synthesis of biologically important N-carbonylmethylene-2-pyridone derivatives.
  • 加载中
    1. [1]

      For selected reviews, see: (a) Lenglet, A.; Liabeuf, S.; Bodeau, S.; Louvet, L.; Mary, A.; Boullier, A.; Lemaire-Hurte, A. S.; Jonet, A.; Sonnet, P.; Kamel, S.; Massy, Z. A. Toxins 2016, 8, 339. (b) Stazi, G.; Zwergel, C.; Mai, A.; Valente, S. Expert Opin. Ther. Pat. 2017, 27, 797. (c) Fioravanti, R.; Stazi, G.; Zwergel, C.; Valente, S.; Mai, A. Chem. Rec. 2018, 18, 1818. (d) Shao, T.; Jiang, Z. Acta Chim. Sinica 2017, 75, 70. (邵天举, 江智勇, 化学学报, 2017, 75, 70.) (e) Ye, M.; Qiu, S.; Yin, G. Chin. J. Org. Chem. 2017, 37, 667. (叶明琰, 邱少中, 殷国栋, 有机化学, 2017, 37, 667.) (f) Bai, F.; Hu, D.; Liu, Y.; Wei, L. Chin. J. Org. Chem. 2018, 38, 2054. (白飞成, 胡德庆, 刘云云, 韦丽, 有机化学, 2018, 38, 2054.)

    2. [2]

      For selected reviews, see: (a) Torres, M.; Gil, S.; Parra, M. Curr. Org. Chem. 2005, 9, 1757. (b) Hill, M. D.; Movassaghi, M. Chem.- Eur. J. 2008, 14, 6836. For selected examples, see: (c) Fang, Y.-Q.; Bio, M. M.; Hansen, K. B.; Potter, M. S.; Clausen, A. J. Am. Chem. Soc. 2010, 132, 15525. (d) Li, B.; Wang, G.; Yang, M.; Xu, Z.; Zeng, B.; Wang, H.; Shen, J.; Chen, K.; Zhu, W. Eur. J. Med. Chem. 2013, 70, 677. (e) Li, C.; Kähny, M.; Breit, B. Angew. Chem., Int. Ed. 2014, 53, 13780. (f) Zhang, X.; Yang, Z.-P.; Huang, L.; You, S.-L. Angew. Chem., Int. Ed. 2015, 54, 1873. (g) Feng, B.; Li, Y.; Li, H.; Zhang, X.; Xie, H.; Cao, H.; Yu, L.; Xu, Q. J. Org. Chem. 2018, 83, 6769.

    3. [3]

      (a) Sato, T.; Yoshimatsu, K.; Otera, J. Synlett 1995, 845. (b) Liu, H.; Ko, S.-B.; Josien, H.; Curran, D. P. Tetrahedron Lett. 1995, 36, 8917.

    4. [4]

      For selected examples, see: (a) Itami, K.; Yamazaki, D.; Yoshida, J.-I. Org. Lett. 2003, 5, 2161. (b) Rodrigues, A.; Lee, E. E.; Batey, R. A. Org. Lett. 2010, 12, 260. (c) Yeung, C. S.; Hsieh, T. H. H.; Dong, V. M. Chem. Sci. 2011, 2, 544. (d) Tasker, S. Z.; Bosscher, M. A.; Shandro, C. A.; Lanni, E. L.; Ryu, K. A.; Snapper, G. S.; Utter, J. M.; Ellsworth, B. A.; Anderson, C. E. J. Org. Chem. 2012, 77, 8220. (e) Pan, S.; Ryu, N.; Shibata, T. Org. Lett. 2013, 15, 1902. (f) Cheng, L.-J.; Brown, A. P. N.; Cordier, C. J. Chem. Sci. 2017, 8, 4299.

    5. [5]

      (a) Ogata, M.; Matsumoto, H.; Kida, S.; Shimizu, S.; Tawara, K.; Kawamura, Y. J. Med. Chem. 1987, 30, 1497. (b) Straub, C. S.; Padwa, A. Org. Lett. 1999, 1, 83. (c) Reichelt, A.; Bur, S. K.; Martin, S. F. Tetrahedron 2002, 58 6323. (d) Abreo, M. A.; Meng, J. J.; Agree, C. S. WO 2002016365, 2002. (e) McArdle, B. M.; Quinn, R. J. ChemBioChem 2007, 8, 788. (f) Jiang, M. X.; Zhou, Y. J. J. Asian Nat. Prod. Res. 2008, 10, 1009. (g) Payne, R. J.; Bulloch, E. M. M.; Kerbarh, O.; Abell, C. Org. Biomol. Chem. 2010, 8, 3534. (h) Micale, N.; Ettari, R.; Lavecchia, A.; Di Giovanni, C.; Scarbaci, K.; Troiano, V.; Grasso, S.; Novellino, E.; Schirmeister, T.; Zappalà, M. Eur. J. Med. Chem. 2013, 64, 23. (i) Scarbaci, K.; Troiano, V.; Micale, N.; Ettari, R.; Tamborini, L.; Di Giovanni, C.; Cerchia, C.; Grasso, S.; Novellino, E.; Schirmeister, T.; Lavecchia, A.; Zappalà, M. Eur. J. Med. Chem. 2014, 76, 1.

    6. [6]

      For selected examples, see: (a) Bannwarth, L.; Kessler, A.; Pèthe, S.; Collinet, B.; Merabet, N.; Boggetto, N.; Sicsic, S.; Reboud-Ravaux, M.; Ongeri, S. J. Med. Chem. 2006, 49, 4657. (b) Gibson, S.; Fernando, R.; Jacobs, H. K.; Gopalan, A. S. Tetrahedron 2015, 71, 9271. (c) Loughlin, W. A.; Jenkins, I. D.; Karis, N. D.; Healy, P. C. Eur. J. Med. Chem. 2017, 127, 341. (d) Dawson, T. K.; Dziedzic, P.; Robertson, M. J.; Cisneros, J. A.; Krimmer, S. G.; Newton, A. S.; Tirado-Rives, J.; Jorgensen, W. L. ACS Med. Chem. Lett. 2017, 8, 1287.

    7. [7]

      For selected examples, see: (a) DeRuiter, J.; Brubaker, A. N.; Whitmer, W. L.; Stein, J. L. J. Med. Chem. 1986, 29, 2024. (b) New, J. S.; Christopher, W. L.; Jass, P. A. J. Org. Chem. 1989, 54, 990. (c) Badgujar, N. S.; Pazicky, M.; Traar, P.; Terec, A.; Uray, G.; Stadlbauer, W. Eur. J. Org. Chem. 2006, 2715. (d) Litchfield, J.; Sharma, R.; Atkinson, K.; Filipski, K. J.; Wright, S. W.; Pfefferkorn, J. A.; Tan, B.; Kosa, R. E.; Stevens, B.; Tu, M.; Kalgutkar, A. S. Bioorg. Med. Chem. Lett. 2010, 20, 6262. (e) Torhan, M. C.; Peet, N. P.; Williams, J. D. Tetrahedron Lett. 2013, 54, 3926. (f) Xin, B.-T.; de Bruin, G.; Plomp, J.-W.; Florea, B. I.; van der Marel, G. A.; Overkleeft, H. S. Eur. J. Org. Chem. 2016, 1132.

    8. [8]

      Selected reviews of Pd-catalyzed allylic substitutions: (a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395. (b) Helmchen, G.; Pfaltz, A. Acc. Chem. Res. 2000, 33, 336. (c) Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921. (d) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258. (e) Trost, B. M.; Zhang, T.; Sieber, J. D. Chem. Sci. 2010, 1, 427. (f) Tosatti, P.; Nelson, A.; Marsden, S. P. Org. Biomol. Chem. 2012, 10, 3147. (g) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185. (h) Lumbroso, A.; Cooke, M. L.; Breit, B. Angew. Chem., Int. Ed. 2013, 52, 1890. (i) Butt, N. A.; Liu, D.; Zhang, W. Synlett 2014, 25, 615. (j) Zhuo, C.-X.; Zheng, C.; You, S.-L. Acc. Chem. Res. 2014, 47, 2558. (k) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929. (l) Butt, N.; Yang, G.; Zhang, W. Chem. Rec. 2016, 16, 2687. (m) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.

    9. [9]

      Selected recent papers: (a) Zhao, X.; Liu, D.; Guo, H.; Liu, Y.; Zhang, W. J. Am. Chem. Soc. 2011, 133, 19354. (b) Zhao, X.; Liu, D.; Xie, F.; Liu, Y.; Zhang, W. Org. Biomol. Chem. 2011, 9, 1871. (c) Huo, X.; Quan, M.; Yang, G.; Zhao, X.; Liu, D.; Liu, Y.; Zhang, W. Org. Lett. 2014, 16, 1570. (d) Huo, X.; Yang, G.; Liu, D.; Liu, Y.; Gridnev, I. D.; Zhang, W. Angew. Chem., Int. Ed. 2014, 53, 6776. (e) Wei, X.; Liu, D.; An, Q.; Zhang, W. Org. Lett. 2015, 17, 5768. (f) Yao, K.; Liu, D.; Yuan, Q.; Imamoto, T.; Liu, Y.; Zhang, W. Org. Lett. 2016, 18, 6296. (g) An, Q.; Liu, D.; Shen, J.; Liu, Y.; Zhang, W. Org. Lett. 2017, 19, 238. (h) Xia, C.; Shen, J.; Liu, D.; Zhang, W. Org. Lett. 2017, 19, 4251. (i) Huo, X.; He, R.; Fu, J.; Zhang, J.; Yang, G.; Zhang, W. J. Am. Chem. Soc. 2017, 139, 9819. (j) Huo, X.; Fu, J.; He, X.; Chen, J.; Xie, F.; Zhang, W. Chem. Commun. 2018, 54, 599. (k) Yao, K.; Yuan, Q.; Qu, X.; Liu, Y.; Liu D.; Zhang, W. Chem. Sci. 2019, 10, 1767. We also developed several Ir-catalyzed asymmetric allylic substitution reactions, see: (l) Huo, X.; He, R.; Zhang, X.; Zhang, W. J. Am. Chem. Soc. 2016, 138, 11093. (m) He, R.; Liu, P.; Huo, X.; Zhang, W. Org. Lett. 2017, 19, 5513. (n) Huo, X.; Zhang, J.; Fu, J.; He, R.; Zhang, W. J. Am. Chem. Soc. 2018, 140, 2080.

    10. [10]

      For selected reviews, see: (a) de Graaff, C.; Ruijter, E.; Orru, R. V. A. Chem. Soc. Rev. 2012, 41, 3969. (b) Slobbe, P.; Ruijter, E.; Orru, R. V. A. Med. Chem. Commun. 2012, 3, 1189. (c) Eppe, G.; Didier, D.; Marek, I. Chem. Rev. 2015, 115, 9175. (d) Vetica, F.; de Figueiredo, R. M.; Orsini, M.; Tofani, D.; Gasperi, T. Synthesis 2015, 47, 2139.

  • 加载中
    1. [1]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    2. [2]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    3. [3]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    4. [4]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    5. [5]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    6. [6]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    7. [7]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    10. [10]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    11. [11]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    14. [14]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    15. [15]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    18. [18]

      Jingjie Tang Luying Xie Jiayu Liu Shangyu Shi Xinyu Sun Jiayang Lin Qikun Yang Chuan'ang Yu Zecheng Wang Yingying Wang Zengyang Xie . Efficient Rapid Synthesis and Antibacterial Activities of Tosylhydrazones: A Recommended Innovative Chemistry Experiment for Undergraduate Medical University. University Chemistry, 2024, 39(3): 316-326. doi: 10.3866/PKU.DXHX202309091

    19. [19]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    20. [20]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

Metrics
  • PDF Downloads(6)
  • Abstract views(921)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return