Citation: Li Mengyin, Ying Yilun, Long Yi-Tao. Unveiling the Synergistic Effect from Key Sensing Regions in Aerolysin-Based Single Oligonucleotide Detection[J]. Acta Chimica Sinica, ;2019, 77(10): 984-988. doi: 10.6023/A19060202 shu

Unveiling the Synergistic Effect from Key Sensing Regions in Aerolysin-Based Single Oligonucleotide Detection

  • Corresponding author: Long Yi-Tao, yitaolong@nju.edu.cn
  • Received Date: 8 June 2019
    Available Online: 11 October 2019

    Fund Project: the National Natural Science Foundation of China 61871183Project supported by the National Natural Science Foundation of China (Nos. 21834001, 61871183)the National Natural Science Foundation of China 21834001

Figures(5)

  • Nanopore technology are being developed for large areas in life science, not only in DNA sequencing and protein sequencing, but also in biomolecule detection, bio-interaction measurement and drug screening. Aerolysin is regarded as new powerful tool for oligonucleotide sensing and peptide sensing due to its high charged pore lumen. Applied a transmembrane potential with a pair of Ag/AgCl electrodes, the negatively charged oligonucleotides are driven into the aerolysin nanopore, inducing a series of ionic current blockages, which could distinguish the oligonucleotides with different length or single base variation. However, due to the lack of high-resolution structure of aerolysin nanopore, the mechanism of its high sensing capability is not clear, limiting the further applications of aerolysin. Recently, we presented two sensing regions inside aerolysin, R1 (near R220) and R2 (near K238), having huge influences on oligonucleotide sensing. Especially, the R1 is responsible for distinguished all 4 bases and 2 modified based in the mixture. However, the detailed mechanism of synergistic effect for these two regions in detection of single nucleotides is still unclear. Here, we use dA14-4-X, dA14-11-X, dA14-4-X-11-X (X=C, T, G) as probes to investigate the effects of base types on the sensing ability of R1 and R2. The results show that the A, C or T in R2 region did not change the sensing ability of R1 region, while G in R2 would hinder the base discrimination in R1 region. This may be caused by the large volume of G that would nearly fully occupy the R2 region and the stronger non-covalent interaction between G and R2 region, resulting in determining the residual current of the whole nanopore. Moreover, we evaluated the interaction between different bases with the sensing region. The results show that the interaction is independent with the volume of the bases, which is ordered by A > G > C > T, suggesting the interaction inside the aerolysin lumen is a considerable factor for its sensing capability. These results would guide us to directly design the mutant Aerolysin nanopore that aims for DNA sequencing and peptide sequencing.
  • 加载中
    1. [1]

      Kasianowicz, J.; Brandin, E.; Branton, D.; Deamer, D. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 13770.  doi: 10.1073/pnas.93.24.13770

    2. [2]

      Bayley, H.; Cremer, P. Nature 2001, 413, 226.  doi: 10.1038/35093038

    3. [3]

      Cao, C.; Long, Y.-T. Acc. Chem. Res. 2018, 5, 331.

    4. [4]

      Ying, Y.; Zhang, X.; Liu, Y.; Xue, M.; Li, H.; Long, Y.-T. Acta Chim. Sinica 2013, 71, 44.
       

    5. [5]

      Gao, P.; Ma, Q.; Ding, D.; Wang, D.; Lou, X.; Zhai, T.; Xia, F. Nat. Commun. 2018, 9, 4557.  doi: 10.1038/s41467-018-06873-z

    6. [6]

      Cao, C.; Liao, D.-F.; Ying, Y.-L.; Long, Y.-T. Acta Chim. Sinica 2016, 74, 734.
       

    7. [7]

      Deamer, D.; Branton, D. Acc. Chem. Res. 2002, 35, 817.  doi: 10.1021/ar000138m

    8. [8]

      Li, Q.; Lin, Y.; Ying, Y.-L.; Liu, S.-C.; Long, Y.-T. Sci. Sin. Chim. 2017, 47, 1445.

    9. [9]

      Clarke, J.; Wu, H.-C.; Jayasinghe, L.; Patel, A.; Reid, S.; Bayley, H. Nat. Nanotechnol. 2009, 4, 265.  doi: 10.1038/nnano.2009.12

    10. [10]

      Manrao, E. A.; Derrington, I. M.; Laszlo, A. H.; Langford, K. W.; Hopper, M. K.; Gillgren, N.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H. Nat. Biotechnol. 2012, 30, 349.  doi: 10.1038/nbt.2171

    11. [11]

      Garalde, D. R.; Snell, E. A.; Jachimowicz, D.; Sipos, B.; Lloyd, J. H.; Bruce, M.; Pantic, N.; Admassu, T.; James, P.; Warland, A.; Jordan, M.; Ciccone, J.; Serra, S.; Keenan, J.; Martin, S.; McNeill, L.; Wallace, E. J.; Jayasinghe, L.; Wright, C.; Blasco, J.; Young, S.; Brocklebank, D.; Juul, S.; Clarke, J.; Heron, A. J.; Turner, D. J. Nat. Methods 2018, 15, 201.  doi: 10.1038/nmeth.4577

    12. [12]

      Sutherland, T. C.; Long, Y.-T.; Stefureac, R.-I.; Bediako-Amoa, I.; Kraatz, H.-B.; Lee, J. S. Nano Lett. 2004, 4, 1273.  doi: 10.1021/nl049413e

    13. [13]

      Yang, J.; Li, S.; Wu, X.-Y.; Long, Y.-T. Chin. J. Anal. Chem. 2017, 45, 1766.  doi: 10.11895/j.issn.0253-3820.171201

    14. [14]

      Pigue, F.; Ouldali, H.; Pastoriza-Gallego, M.; Manivet, P.; Pelta, J.; Oukhaled, A. Nat. Commun. 2018, 9, 966.  doi: 10.1038/s41467-018-03418-2

    15. [15]

      Li, S.; Cao, C.; Yang, J.; Long, Y.-T. ChemElectroChem 2018, 6, 126.

    16. [16]

      Si, W.; Aksimentiev, A. ACS Nano 2017, 11, 7091.  doi: 10.1021/acsnano.7b02718

    17. [17]

      Hu, Z.; Du, J.; Ying, Y.; Peng, Y.; Cao, C.; Long, Y.-T. Acta Chim. Sinica 2017, 75, 1087.
       

    18. [18]

      Wanunu, M.; Dadosh, T.; Ray, V.; Jin, J.; McReynolds, L.; Drndić, M. Nat. Nanotechnol. 2010, 5, 807.  doi: 10.1038/nnano.2010.202

    19. [19]

      Xi, D.; Shang, J.; Fan, E.; You, J.; Zhang, S.; Wang, H. Anal. Chem. 2016, 88, 10540.  doi: 10.1021/acs.analchem.6b02620

    20. [20]

      Uram, J.; Ke, K.; Hunt, A.; Mayer, M. Angew. Chem. 2006, 118, 2339.  doi: 10.1002/ange.200502862

    21. [21]

      Jiang, Y.; Feng, Y.; Su, J.; Nie, J.; Cao, L.; Mao, L.; Jiang, L.; Guo, W. J. Am. Chem. Soc. 2017, 139, 18739.  doi: 10.1021/jacs.7b11732

    22. [22]

      Stoddart, D.; Heron, A. J.; Mikhailova, E.; Maglia, G.; Bayley, H. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 7702.  doi: 10.1073/pnas.0901054106

    23. [23]

      Cao, C.; Li, M.-Y.; Cirauqui, N.; Wang, Y.-Q.; Peraro, M.; Tian, H.; Long, Y.-T. Nat. Commun. 2018, 9, 2823.  doi: 10.1038/s41467-018-05108-5

    24. [24]

      Maglia, G.; Restrepo, M.; Mikhailova, E.; Bayley, H. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 19720.  doi: 10.1073/pnas.0808296105

    25. [25]

      Derrington, I.; Butler, T.; Collins, M.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J. Proc. Natl. Acad. Sci. U. S. A. 2010, 107, 16060.  doi: 10.1073/pnas.1001831107

    26. [26]

      Duan, J.; Zhuo, S.; Yao, F.-J.; Zhang, Y.-N.; Kang, X.-F. Chin. J. Anal. Chem. 2016, 44, 1801.

    27. [27]

      Gao, R.; Ying, Y.-L.; Yan, B.-Y.; Long, Y.-T. Chin. Sci. Bull. 2014, 59, 4968.  doi: 10.1007/s11434-014-0656-0

    28. [28]

      Zhang, Z.; Li, T.; Sheng, Y.; Liu, L.; Wu, H.-C. Small 2019, 15, 1804078.  doi: 10.1002/smll.201804078

    29. [29]

      Ying, Y.-L.; Chao, C.; Hu, Y.-X.; Long, Y.-T. Natl. Sci. Rev. 2018, 5, 450.  doi: 10.1093/nsr/nwy029

    30. [30]

      Iacovache, I.; Carlo, S.; Cirauqui, N.; Peraro, M.; van der Goot, G.; Zuber, B. Nat. Commun. 2016, 7, 12062.  doi: 10.1038/ncomms12062

    31. [31]

      Stefureac, R.; Long, Y.-T.; Kraatz, H. B.; Howard, P.; Lee, J. S. Biochemistry 2006, 60, 9172.

    32. [32]

      Cressiot, B.; Braselmann, E.; Oukhaled, A.; Elcock, A. H.; Pelta, J.; Clark, P. L. ACS Nano 2015, 9, 9050.  doi: 10.1021/acsnano.5b03053

    33. [33]

      Fennouri, A.; Daniel, R.; Pastoriza-Gallego, M.; Auvray, L.; Pelta, J.; Bacri, L. Anal. Chem. 2013, 85, 8488.  doi: 10.1021/ac4020929

    34. [34]

      Baaken, G.; Halimeh, I.; Bacri, L.; Pelta, J.; Oukhaled, A.; Behrends, J. ACS Nano 2015, 9, 6443.  doi: 10.1021/acsnano.5b02096

    35. [35]

      Cao, C.; Ying, Y.-L.; Hu, Z.-L.; Liao, D.-F.; Tian, H.; Long, Y.-T. Nat. Nanotechnol. 2016, 11, 713.  doi: 10.1038/nnano.2016.66

    36. [36]

      Wang, Y.-Q.; Li, M.-Y.; Qiu, H.; Cao, C.; Wang, M.-B.; Wu, X.-Y.; Huang, J.; Ying, Y.-L.; Long, Y.-T. Anal. Chem. 2018, 90, 7790.  doi: 10.1021/acs.analchem.8b01473

    37. [37]

      Hu, Z.-L.; Li, Z.-Y.; Ying, Y.-L.; Zhang, J.; Cao, C.; Long, Y.-T.; Tian, H. Anal. Chem. 2018, 90, 4268.  doi: 10.1021/acs.analchem.8b00096

  • 加载中
    1. [1]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    2. [2]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    3. [3]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    8. [8]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    9. [9]

      Pingwei Wu . Application of Diamond Software in Simplex Teaching. University Chemistry, 2024, 39(3): 118-121. doi: 10.3866/PKU.DXHX202311043

    10. [10]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    11. [11]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    12. [12]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    13. [13]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    16. [16]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    17. [17]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(9)
  • Abstract views(1302)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return