Citation: Lu Fu-Dong, Jiang Xuan, Lu Liang-Qiu, Xiao Wen-Jing. Application of Propargylic Radicals in Organic Synthesis[J]. Acta Chimica Sinica, ;2019, 77(9): 803-813. doi: 10.6023/A19060201 shu

Application of Propargylic Radicals in Organic Synthesis

  • Corresponding author: Lu Liang-Qiu, luliangqiu@mail.ccnu.edu.cn Xiao Wen-Jing, wxiao@mail.ccnu.edu.cn
  • Received Date: 8 June 2019
    Available Online: 13 September 2019

    Fund Project: the National Natural Science Foundation of China 21772053the Natural Science Foundation of Hubei Province 2017AHB047the Natural Science Foundation of Hubei Province 2015CFA033the National Natural Science Foundation of China 21772052Project supported by the National Natural Science Foundation of China (Nos. 21572074, 21772052 and 21772053) and the Natural Science Foundation of Hubei Province (Nos. 2015CFA033, 2017AHB047)the National Natural Science Foundation of China 21572074

Figures(20)

  • The production and transformation of alkynes occupys an important position in organic synthetic chemistry. Within this realm, propargylic functionalization of alkynes is a feasible way towards this purpose. Especially, the propargylic functionalization via radical pathways has flourished in the last decade, which is believed to be a significant complement to the classic metal-catalyzed propargylation reaction involving cationic intermediates. According to the reaction modes, these advancements will be highlighted by classifying into four types. The first one is the propargylic functionalization reactions involving propargylic radicals. Generally, propargylic radicals can be generated through single electron reduction of alkyne substrates by low-valence metal catalysts or excited state of photocatalysts, then participated in the following cross-coupling reactions to achieve alkyne products. In this part, asymmetric variants have been also well developed. The second one is the preparation of allene compounds through the allenyl radical pathway. For these processes, propargylic radicals can isomerize to allenyl radicals, which can participate in the copper-or nickel-catalyzed coupling reaction to produce significant allene compounds. The third one is the dehydrative alkylation reaction of propargyl alcohols that involve propargylic radical intermediates, too. Such radical intermediates can be further oxidized to propargylic cation intermediates, followed by a deprotonation to form substituted 1, 3-enyne compounds. The forth one is the synthesis of vinylic alkoxyamines through a propargylic radical route. Initially, propargyl alcohols can be converted to propargylic radical species by the joint action of copper catalysts and TEMPO. The generated propargylic radical species can be captured by TEMPO to form vinylic alkoxyamines. Finally, an outlook on the radical propargylic functionalizations will be provided at the end of this review.
  • 加载中
    1. [1]

      (a) Trost, B. M.; Li, C.-J. Modern Alkyne Chemistry: Catalytic and Atom-Economic Transformations, Wiley-VCH, New York, 2014. (b) Trotuş, I. T.; Zimmermann, T.; Schüth, F. Chem. Rev. 2014, 114, 1761. (c) Tiwari, V. K.; Mishra, B. B.; Mishra, K. B.; Mishra, N.; Singh, A. S.; Chen, X. Chem. Rev. 2016, 116, 3086. (d) Huang, D.; Liu, Y.; Qin, A.-J.; Tang, B.-Z. Polym. Chem. 2018, 9, 2853.

    2. [2]

      Ding, C.-H.; Hou, X.-L. Chem. Rev. 2011, 111, 1914.  doi: 10.1021/cr100284m

    3. [3]

      (a) Nicholas, K. M.; Pettit, R. Tetrahedron Lett. 1971, 37, 3475. (b) Nicholas, K. M.; Pettit, R. J. Organomet. Chem. 1972, 44, 21.

    4. [4]

      Melikyan, G. G. Acc. Chem. Res. 2015, 48, 1065.  doi: 10.1021/ar500365v

    5. [5]

      Geri, R.; Oilizzi, C.; Lardicci, L.; Caporusso, A. M. Gazz. Chim. Ital. 1994, 124, 241.

    6. [6]

    7. [7]

      Bruneau, C.; Dixneuf, P. H. Metal Vinylidenes and Allenylidenes in Catalysis, Wiley-VCH, Weinheim, 2008.

    8. [8]

      (a) Kropf, H.; SchrÖder, R.; FÖlsing, R. Synthesis 1977, 894. (b) Alvarez, L. X.; Christ, M. L.; Sorokin, A. B. Appl. Catal. A: Gen. 2007, 325, 303.

    9. [9]

      Smith, S. W.; Fu, G. C. J. Am. Chem. Soc. 2008, 130, 12645.  doi: 10.1021/ja805165y

    10. [10]

      Oelke, A. J.; Sun, J.-W.; Fu, G. C. J. Am. Chem. Soc. 2012, 134, 2966.  doi: 10.1021/ja300031w

    11. [11]

      Pelphrey, P. M.; Popov, V. M.; Joska, T. M.; Beierlein, J. M.; Bolstad, E. S. D.; Fillingham, Y. A.; Wright, D. L.; Anderson, A. C. J. Med. Chem. 2007, 50, 940.  doi: 10.1021/jm061027h

    12. [12]

      Schley, N. D.; Fu, G. C. J. Am. Chem. Soc. 2014, 136, 16588.  doi: 10.1021/ja508718m

    13. [13]

      Domingo-Legarda, P.; Soler-Yanes, R.; Quirós-López, M. T.; Buñuel, E.; Cárdenas, D. J. Eur. J. Org. Chem. 2018, 35, 4900.

    14. [14]

      An, L.; Tong, F.-F.; Zhang, X.-G. Acta Chim. Sinica 2018, 76, 977(in Chinese).
       

    15. [15]

      Lu, F.-D.; Liu, D.; Zhu, L.; Lu, L.-Q.; Yang, Q.; Zhou, Q.-Q.; Wei, Y.; Lan, Y.; Xiao, W.-J. J. Am. Chem. Soc. 2019, 141, 6167.  doi: 10.1021/jacs.9b02338

    16. [16]

      Cheng, J.-K.; Loh, T.-P. J. Am. Chem. Soc. 2015, 137, 42.  doi: 10.1021/ja510635k

    17. [17]

      Andia, A. A.; Miner, M. R.; Woerpel, K. A. Org. Lett. 2015, 17, 2704.  doi: 10.1021/acs.orglett.5b01120

    18. [18]

      Miner, M. R.; Woerpel, K. A. Eur. J. Org. Chem. 2016, 1860.

    19. [19]

      Cheng, J.-K.; Shen, L.; Wu, L.-H.; Hu, X.-H.; Loh, T.-P. Chem. Commun. 2017, 53, 12830.  doi: 10.1039/C7CC08074C

    20. [20]

    21. [21]

      (a) Wartenberg, F.-H.; Junga, H.; Blechert, S. Tetrahedron Lett. 1993, 34, 5251. (b) Alameda-Angulo, C.; Quiclet-Sire, B.; Zard, S. Z. Tetrahedron Lett. 2006, 47, 913.

    22. [22]

      Soler-Yanes, R.; Arribas-Álvarez, I.; Guisán-Ceinos, M.; Buñuel, E.; Cárdenas, D. J. Chem. Eur. J. 2017, 23, 1584.  doi: 10.1002/chem.201603758

    23. [23]

      Wang, F.; Wang, D.-H.; Zhou, Y.; Liang, L.; Lu, R.-H.; Chen, P.-H.; Lin, Z.-Y.; Liu, G.-S. Angew. Chem., Int. Ed. 2018, 57, 7140.  doi: 10.1002/anie.201803668

    24. [24]

      Zhu, X.; Deng, W.; Chiou, M.-F.; Ye, C.; Jian, W.; Zeng, Y.; Jiao, Y.; Ge, L.; Li, Y.; Zhang, X.; Bao, H. J. Am. Chem. Soc. 2019, 141, 548.  doi: 10.1021/jacs.8b11499

    25. [25]

      Ye, C.-Q.; Li, Y.-J.; Zhu, X.-T.; Hu, S.-M.; Yuan, D.-Q.; Bao, H.-L. Chem. Sci. 2019, 10, 3632.  doi: 10.1039/C8SC05689G

    26. [26]

      Zhang, K.-F.; Bian, K.-J.; Li, C.; Sheng, J.; Li, Y.; Wang, X.-S. Angew. Chem. Int. Ed. 2019, 58, 5069.  doi: 10.1002/anie.201813184

    27. [27]

      Ye, C.-Q.; Qian, B.; Li, Y.-J.; Su, M.; Li, D.-L.; Bao, H.-L. Org. Lett. 2018, 20, 3202.  doi: 10.1021/acs.orglett.8b01043

    28. [28]

      Kang, Y.-W.; Choi, Y.-J.; Jang, H.-Y. Org. Lett. 2014, 16, 4842.  doi: 10.1021/ol502341f

    29. [29]

      Horn, E. J.; Rosen, B. R.; Chen, Y.; Tang, J.; Chen, K.; Eastgate, M. D.; Baran, P. S. Nature 2016, 533, 77.  doi: 10.1038/nature17431

  • 加载中
    1. [1]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    2. [2]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    3. [3]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    6. [6]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    7. [7]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    8. [8]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    9. [9]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    10. [10]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    13. [13]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    20. [20]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

Metrics
  • PDF Downloads(75)
  • Abstract views(3595)
  • HTML views(1159)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return