Citation: Wang Menghan, Wan Li, Gao Xuyu, Yuan Wenbo, Fang Junfeng, Tao Youtian, Huang Wei. Synthesis of D-π-A-π-D Type Dopant-Free Hole Transporting Materials and Application in Inverted Perovskite Solar Cells[J]. Acta Chimica Sinica, ;2019, 77(8): 741-750. doi: 10.6023/A19060200 shu

Synthesis of D-π-A-π-D Type Dopant-Free Hole Transporting Materials and Application in Inverted Perovskite Solar Cells

  • Corresponding author: Fang Junfeng, fangjf@nimte.ac.cn Tao Youtian, iamyttao@njtech.edu.cn
  • These authors contributed equally to this work
  • Received Date: 6 June 2019
    Available Online: 28 August 2019

    Fund Project: Project supported by the National Key Research and Development Program of China for the Joint Research Program between China and European Union (No.2016YFE0112000), National Natural Science Foundation of China (No. 61761136013), and the Natural Science Foundation of Jiangsu Province (No.BK20160042)the Natural Science Foundation of Jiangsu Province BK20160042National Natural Science Foundation of China 61761136013the National Key Research and Development Program of China for the Joint Research Program between China and European Union 2016YFE0112000

Figures(9)

  • Perovskite solar cells (PVSCs) have recently gained much attention for the advantages of low cost and high efficiency. Based on the different device structures, PVSCs can be simply classified into conventional and inverted categories. Compared with the inverted devices, conventional PVSCs generally exhibited higher PCE. Especially, a milestone PCE value of 24.3% was obtained in conventional PVSCs. However, the complexity and high-temperature process in device fabrication further limit their application in flexible and large-scale devices, while the inverted PVSCs can make up the shortcomings of the conventional PVSCs. Commonly, PVSCs devices contain electrodes, electron/hole transporting layers and the perovskite layer. Among the function layers, hole transporting layers (HTLs) play a crucial role in improving the photovoltaic performance of inverted PVSCs. From the materials point of view, the efficient hole transporting materials (HTMs) are mostly inorganic compounds and polymers. On the other side, taking advantages of easy modification, low price, easy preparation and homogeneity in batches, small molecular HTMs afford superior promising in fabricating efficient and stable PVSCs. However, up to date, small molecular HTMs are relatively less explored. To enrich the material species of small molecular HTMs and illustrate their superiorities in constructing stable PVSCs, in this paper, we designed and synthesized three D-π-A-π-D type small molecular HTMs based on triphenylamine (TPA) unit, namely 1-T, 1-OT and 1-OTCN. The optoelectronic properties of these molecules were modified by introducing different electron acceptor/donor groups. Afterwards, employing as dopant-free HTMs in inverted PVSCs, the three small molecules demonstrated distinguished performance. We found that introduction of electron-donating methoxy into 1-T, 1-OT exhibited increased energy levels and hole mobility. On the other hand, the energy levels of 1-OTCN were down-shifted compared to 1-OT, which was attributed from the stronger electron-withdrawing ability of dicyanovinylene group than carbonyl group. Among the devices with new HTMs, 1-OTCN based PVSCs achieved the best PCE of 16.8%, with open-circuit voltage (VOC) of 1.09 V, short-circuit current density (JSC) of 20.13 mA·cm-2 and fill factor (FF) of 78%. Compared with other HTMs, the higher JSC of 1-OTCN based PVSCs was ascribed from more efficient charge transfer and extraction in the interface of HTL/perovskite. Moreover, in contrast with the hydrophilicity of PEDOT:PSS, the hydrophobicity of 1-OTCN contributed to the satisfactory stability of PVSCs.
  • 加载中
    1. [1]

      Chai, L.; Zhong, M. Acta Phys. Sin. 2016, 65, 237902(in Chinese).  doi: 10.7498/aps.65.237902

    2. [2]

      Pan, B.; Zhu, Y.-Z.; Qiu, C.-J.; Wang, B.; Zheng, J.-Y. Acta Chim. Sinica 2018, 76, 215(in Chinese).
       

    3. [3]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050.  doi: 10.1021/ja809598r

    4. [4]

      https://www.nrel.gov/pv/assets/images/efficiency-chart.png.

    5. [5]

      Zhao, C.; Ma, Y.; Wang, Y.; Zhu, X.; Li, H.-Z.; Li, M.-Z.; Song, Y.-L. Acta Chim. Sinica 2018, 76, 9(in Chinese).  doi: 10.3866/PKU.WHXB201707072
       

    6. [6]

      Chen, X.-Y.; Xie, J.-J.; Wang, W.; Yuan, H.-H.; Xu, D.; Zhang, T.; He, Y.-L. Shen, H.-J. Acta Chim. Sinica 2019, 77, 9(in Chinese).  doi: 10.3866/PKU.WHXB201711141
       

    7. [7]

      Li, C.-P.; Lv, X.-D.; Cao, J.; Tang, Y. Chin. J. Chem. 2019, 37, 30.  doi: 10.1002/cjoc.201800469

    8. [8]

      Wang, Y.-L.; Chang, S.; Chen, X.-M.; Ren, Y.-D.; Shi, L.-F.; Liu, Y.-H.; Zhong, H.-Z. Chin. J. Chem. 2019, 37, 616.  doi: 10.1002/cjoc.201900071

    9. [9]

      Etgar, L.; Gao, P.; Xue, Z.; Peng, Q.; Chandiran, A. Q.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. J. Am. Chem. Soc. 2012, 134, 17396.  doi: 10.1021/ja307789s

    10. [10]

      Liu, M.; Johnston, M. B.; Snaith, H. J. Nature 2013, 501, 395.  doi: 10.1038/nature12509

    11. [11]

      Gao, P.; Grätzel, M.; Nazeeruddin, M. K. Energy Environ. Sci. 2014, 7, 2448.  doi: 10.1039/C4EE00942H

    12. [12]

      Green, M. A.; Ho-Baillie, A.; Snaith, H. J. Nature Photon. 2014, 8, 506.  doi: 10.1038/nphoton.2014.134

    13. [13]

      Liu, X.-D.; Li, Y.-F. J. Electrochem. 2016, 22, 315.

    14. [14]

      Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martín, N. Chem. Soc. Rev. 2018, 47, 8541.  doi: 10.1039/C8CS00262B

    15. [15]

      Niu, G.-D.; Guo, X.-D.; Wang, L.-D. J. Mater. Chem. A 2015, 3, 8970.  doi: 10.1039/C4TA04994B

    16. [16]

      Hawash, Z.; Ono, L. K.; Raga, S. R.; Lee, M. V.; Qi, Y.-B. Chem. Mater. 2015, 27, 562.  doi: 10.1021/cm504022q

    17. [17]

      Leijtens, T.; Giovenzana, T.; Habisreutinger, S. N.; Tinkham, J. S.; Noel, N. K.; Kamino, B. A.; Sadoughi, G.; Sellinger, A.; Snaith, H. J. ACS Appl. Mater. Interfaces 2016, 8, 5981.  doi: 10.1021/acsami.5b10093

    18. [18]

      Zhang, L.-Z.; Zhou, X.-Y.; Zhong, X.-W.; Cheng, C.; Tian, Y.-Q.; Xu, B.-M. Nano Energy 2019, 57, 248.  doi: 10.1016/j.nanoen.2018.12.033

    19. [19]

      Li, X.-D.; Wang, Y.-C.; Zhu, L.-P.; Zhang, W.-J.; Wang, H.-Q.; Fang, J.-F. ACS Appl. Mater. Interfaces 2017, 9, 31357.  doi: 10.1021/acsami.7b11977

    20. [20]

      Sun, W.-H.; Li, Y.-L.; Yan, W.-B.; Peng, H.-T.; Ye, S.-Y.; Rao, H.-X.; Zhao, Z.-R. Liu, Z.-W. Bian, Z.-Q. Huang, C.-H. Chin. J. Chem. 2017, 35, 687.  doi: 10.1002/cjoc.201600704

    21. [21]

      Zhang, Z, -G.; Yang, Y.-K.; Yao, J.; Xue, L.-W.; Chen, S.-S.; Li, X.-J.; Morrison, W.; Yang, C.; Li, Y.-F. Angew. Chem., Int. Ed. 2017, 129, 13688.  doi: 10.1002/ange.201707678

    22. [22]

      Yan, W.-B.; Ye, S.-Y.; Li, Y.-L.; Sun, W.-H.; Rao, H.-X.; Liu, Z.-W.; Bian, Z.-Q.; Huang, C.-H. Adv. Energy Mater. 2016, 6, 1600474.  doi: 10.1002/aenm.201600474

    23. [23]

      Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. Adv. Funct. Mater. 2011, 21, 1076.  doi: 10.1002/adfm.201002290

    24. [24]

      Jeng, J.-Y.; Chen, K.-C.; Chiang, T.-Y.; Lin, P.-Y.; Tsai, T.-D.; Chang, Y.-C.; Guo, T.-F.; Chen, P.; Wen, T.-C.; Hsu, Y.-J. Adv. Mater. 2014, 26, 4107.  doi: 10.1002/adma.201306217

    25. [25]

      Kim, J. H.; Liang, P.-W.; Williams, S. T.; Cho, N.; Chueh, C.-C.; Glaz, M. S.; Ginger, D. S.; Jen, A. K. Y. Adv. Mater. 2015, 27, 695.  doi: 10.1002/adma.201404189

    26. [26]

      Lim, K.-G.; Kim, H.-B.; Jeong, J.; Kim, H.; Kim, J. Y.; Lee, T.-W. Adv. Mater. 2014, 26, 6461.  doi: 10.1002/adma.201401775

    27. [27]

      Girotto, C.; Moia, D.; Rand, B. P.; Heremans, P. Adv. Funct. Mater. 2011, 21, 64.  doi: 10.1002/adfm.201001562

    28. [28]

      Hou, F.-H.; Su, Z.-S.; Jin, F.-M.; Yan, X.-W.; Wang, L.-D.; Zhao, H.-F.; Zhu, J.-Z.; Chu, B.; Li, W.-L. Nanoscale 2015, 7, 9427.  doi: 10.1039/C5NR01864A

    29. [29]

      Nie, W.-Y.; Tsai, H.; Asadpour, R.; Blancon, J.; Neukirch, A. J.; Gupta1, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; Wang, H.; Mohite, A. D. Science 2015, 347, 522.  doi: 10.1126/science.aaa0472

    30. [30]

      Zhou, H.-P.; Chen, Q.; Li, G.; Luo, S.; Song, T.; Duan, H.; Hong, Z.-R.; You, J.-B.; Liu, Y.-S.; Yang, Y. Science 2014, 345, 542.  doi: 10.1126/science.1254050

    31. [31]

      Li, Y.; Xu, Z.; Zhao, S.-L.; Qiao, B.; Huang, D.; Zhao, L.; Zhao, J.; Wang, P.; Zhu, Y.-Q.; Li, X.-G.; Liu, X.-C.; Xu, X.-R. Small 2016, 12, 4902.  doi: 10.1002/smll.201601603

    32. [32]

      Yang, L.-Y.; Cai, F.-L.; Yan, Y.; Li, J.-H.; Liu, D.; Pearson, A. J.; Wang, T. Adv. Funct. Mater. 2017, 27, 1702613.  doi: 10.1002/adfm.201702613

    33. [33]

      Huang, C.-Y.; Fu, W.-F.; Li, C.-Z.; Zhang, Z.-Q.; Qiu, W.-M.; Shi, M.-M.; Heremans, P.; Jen, A. K.-Y.; Chen, H.-Z. J. Am. Chem. Soc. 2016, 138, 2528.  doi: 10.1021/jacs.6b00039

    34. [34]

      Xue, R.-M.; Zhang, M.-Y.; Xu, G.-Y.; Zhang, J.-W.; Chen, W.-J.; Chen, H.-Y.; Yang, M.; Cui, C.-H.; Li, Y.-W.; Li, Y.-F. J. Mater. Chem. A 2018, 6, 404.  doi: 10.1039/C7TA09716F

    35. [35]

      Wang, J.-Y.; Liu, K.; Ma, L.-C.; Zhan, X.-W. Chem. Rev. 2016, 116, 14675.  doi: 10.1021/acs.chemrev.6b00432

    36. [36]

      Song, Z.-H.; Wang, S.-R.; Xiao, Y.; Li, X.-G. Acta Phys. Sin. 2015, 64, 033301(in Chinese).  doi: 10.7498/aps.64.033301

    37. [37]

      Zhang, H.; Wu, Y.-Z.; Zhang, W.-W.; Li, E.-P.; Shen, C.; Jiang, H.-Y.; Tian, H.; Zhu, W.-H. Chem. Sci. 2018, 9, 5919.  doi: 10.1039/C8SC00731D

    38. [38]

      Shen, C.; Wu, Y.-Z.; Zhang, H.; Li, E.-P.; Zhang, W.-W.; Xu, X.-J.; Wu, W.-J.; He, T.; Zhu, W.-H. Angew. Chem. Int. Ed. 2019, 58, 3784.  doi: 10.1002/anie.201811593

    39. [39]

      Urieta-Mora, J.; García-Benito, I.; Molina-Ontoria, A.; Martín, N. Chem. Soc. Rev. 2018, 47, 8541.  doi: 10.1039/C8CS00262B

    40. [40]

      Li, H.-R.; Fu, K.-W.; Hagfeldt, A.; Grätzel, M.; Mhaisalkar, S. G.; Grimsdale, A. C. Angew. Chem. Int. Ed. 2014, 53, 4169.

    41. [41]

      Yang, D.; Sano, T.; Yaguchi, Y.; Sun, H.; Sasabe, H.; Kido, J. Adv. Funct. Mater. 2018, 29, 1807556.

    42. [42]

      Bi, C.; Wang, Q.; Shao, Y.-C.; Yuan, Y.-B.; Xiao, Z.-G.; Huang, J.-S. Nat. Commun. 2015, 6, 7747.  doi: 10.1038/ncomms8747

    43. [43]

      Yu, H.-Z. Acta Phys. Sin. 2012, 61, 087204(in Chinese).  doi: 10.7498/aps.61.087204

    44. [44]

      Davey, M. H.; Lee, V. Y.; Miller, R. D.; Marks, T. J. J. Org. Chem. 1999, 64, 4976.  doi: 10.1021/jo990235x

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    11. [11]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    12. [12]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    13. [13]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    14. [14]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    15. [15]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Qiuyu Xiang Chunhua Qu Guang Xu Yafei Yang Yue Xia . A Journey beyond “Alum”. University Chemistry, 2024, 39(11): 189-195. doi: 10.12461/PKU.DXHX202404094

    18. [18]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    19. [19]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    20. [20]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(20)
  • Abstract views(1248)
  • HTML views(217)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return