Citation: Qian Xiangyang, Xiong Peng, Xu Hai-Chao. Modular Synthesis of Functionalized 4-Quinolones via a Radical Cyclization Cascade Reaction[J]. Acta Chimica Sinica, ;2019, 77(9): 879-883. doi: 10.6023/A19050193 shu

Modular Synthesis of Functionalized 4-Quinolones via a Radical Cyclization Cascade Reaction

  • Corresponding author: Xu Hai-Chao, haichao.xu@xmu.edu.cn
  • Received Date: 25 May 2019
    Available Online: 1 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21672178) and Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21672178

Figures(4)

  • 4-Quinolones are structural motifs prevalent in natural products and biologically active compounds. However, it remains challenging to synthesize 4-quinolones that bears diverse substituents at 2-and 3-positions. Herein we report an efficient and modular method for the synthesis of 4-quinolones from easily available N-aryl-O-propargyl carbamates and CO. The reactions employ 2-iodoxybenzoic acid (IBX) as an oxidant to oxidize the N-H group of the carbamate to generate an amide radical, which undergoes radical cyclization cascade with CO to afford the 4-quinolone product. The reactions provide speedy access to a series of 2, 3-disubstituted 4-quinolones by varying the substituents of the carbamate substrate. Late stage functionalization employing Ni-catalysis allows the conversion of an OMe group on the 4-quinonone benzene ring to alkyl substituents, further increasing the diversity of the 4-quinone product. The synthetic potential is further demonstrated by running the synthesis on gram scale and by preparation of an enantiomerically enriched 4-quinolone product. The typical procedure is detailed as follows:A magnetic stirring bar, the carbamate substrate (0.25 mmol), IBX (1.0 mmol), and anhydrous dimethyl sulfoxide (DMSO, 10 mL) were placed in a 50 mL stainless steel autoclave. The autoclave was sealed, vacuumed and purged five times with CO, and finally pressurized with 10 MPa of CO. The reaction vessel was heated at 90℃ for 12 h and then cooled to r.t.. Excess CO was released in a fume hood. The reaction mixture was diluted with ethyl acetate (20 mL) and 5% NaHCO3 (15 mL). The phases were separated. The aqueous phase was extracted with ethyl acetate (20 mL×2). The combined organic solution was washed with 5% NaHCO3 (20 mL) and brine (20 mL). The organic solution was dried over anhydrous MgSO4, filtered and concentrated under reduced pressure. The residue was chromatographed through silica gel eluting with ethyl acetate/hexanes to give the desired product.
  • 加载中
    1. [1]

      (a) Mitscher, L. A. Chem. Rev. 2005, 105, 559; (b) Zhanel, G. G.; Ennis K.; Vercaigne, L.; Walkty, A.; Gin, A. S.; Embil, J.; Smith, H.; Hoban1, D. J. Drugs 2002, 62, 13.

    2. [2]

      (a) Nilsen, A.; Miley, G. P.; Forquer, I. P.; Mather, M. W.; Katneni, K.; Li, Y.; Pou, S.; Pershing, A. M.; Stickles, A. M.; Ryan, E.; Kelly, J. X.; Doggett, J. S.; White, K. L.; Hinrichs, D. J.; Winter, R. W.; Charman, S. A.; Zakharov, L. N.; Bathurst, I.; Burrows, J. N.; Vaidya, A. B.; Riscoe, M. K. J. Med. Chem. 2014, 57, 3818; (b) Nilsen, A.; LaCrue, A. N.; White, K. L.; Forquer, I. P.; Cross, R. M.; Marfurt, J.; Mather, M. W.; Delves, M. J.; Shackleford, D. M.; Saenz, F. E.; Morrisey, J. M.; Steuten, J.; Mutka, T.; Li, Y.; Wirjanata, G.; Ryan, E.; Duffy, S.; Kelly, J. X.; Sebayang, B. F.; Zeeman, A.-M.; Noviyanti, R.; Sinden, R. E.; Kocken, C. H. M.; Price, R. N.; Avery, V. M.; Angulo-Barturen, I.; Jiménez-Díaz, M. B.; Ferrer, S.; Herreros, E.; Sanz, L. M.; Gamo, F.-J.; Bathurst, I.; Burrows, J. N.; Siegl, P.; Guy, R. K.; Winter, R. W.; Vaidya, A. B.; Charman, S. A.; Kyle, D. E.; Manetsch, R.; Riscoe, M. K. Sci. Transl. Med. 2013, 5, 177ra137.

    3. [3]

      Wang, Z. (2010). Conrad-Limpach Quinoline Synthesis. In Comprehensive Organic Name Reactions and Reagents, Z. Wang (Ed.). doi: 10.1002/9780470638859.conrr152.

    4. [4]

      Gould, R. G.; Jacobs, W. A. J. Am. Chem. Soc. 1939, 61, 2890.  doi: 10.1021/ja01265a088

    5. [5]

      (a) Mukhina, O. A.; Kutateladze, A. G. J. Am. Chem. Soc. 2016, 138, 2110; (b) Kwon, S.; Kang, D.; Hong, S. Eur. J. Org. Chem. 2015, 2015, 3671; (c) Shao, T.; Jiang, Z. Acta Chim. Sinica 2017, 75, 70. (d) Qiang Xie, Q.; Chen, X.-J.; Huang, P.-Q. Acta Chim. Sinica 2015, 73, 705.

    6. [6]

      (a) Malacria, M. Chem. Rev. 1996, 96, 289; (b) Curran, D. P. Aldrichimica Acta 2000, 33, 104.

    7. [7]

      Fuentes, N.; Kong, W. Q.; Fernandez-Sanchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964.  doi: 10.1021/ja5115858

    8. [8]

      (a) Hou, Z. W.; Mao, Z. Y.; Zhao, H. B.; Melcamu, Y. Y.; Lu, X.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 9168; (b) Zhu, L.; Xiong, P.; Mao, Z. Y.; Wang, Y. H.; Yan, X.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2016, 55, 2226; (c) Hou, Z.-W.; Mao, Z.-Y.; Song, J.; Xu, H.-C. ACS Catal. 2017, 5810; (d) Hou, Z.-W.; Yan, H.; Song, J.-S.; Xu, H.-C. Chin. J. Chem. 2018, 36, 909; (e) Hou, Z.-W.; Mao, Z.-Y.; Melcamu, Y. Y.; Lu, X.; Xu, H.-C. Angew. Chem., Int. Ed. 2018, 57, 1636; (f) Xu, F.; Long, H.; Song, J.; Xu, H.-C. Angew. Chem., Int. Ed. 2019, 58, 9017; (g) Long, H.; Song, J. S.; Xu, H. C. Org. Chem. Front. 2018, 5, 3129; (h) Xiong, P.; Xu, H.-H.; Xu, H.-C. J. Am. Chem. Soc. 2017, 139, 2956.

    9. [9]

      Nicolaou, K. C.; Baran, P. S.; Zhong, Y. L.; Barluenga, S.; Hunt, K. W.; Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124, 2233.  doi: 10.1021/ja012126h

    10. [10]

      Matsumura, K.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. 1997, 119, 8738.  doi: 10.1021/ja971570a

    11. [11]

      (a) Tobisu, M.; Chatani, N. Acc. Chem. Res. 2015, 48, 1717; (b) Guan, B.-T.; Xiang, S.-K.; Wu, T.; Sun, Z.-P.; Wang, B.-Q.; Zhao, K.-Q.; Shi, Z.-J. Chem. Commun. 2008, 1437; (c) Leiendecker, M.; Hsiao, C.-C.; Guo, L.; Alandini, N.; Rueping, M. Angew. Chem., Int. Ed. 2014, 53, 12912; (d) Tobisu, M.; Takahira, T.; Chatani, N. Org. Lett. 2015, 17, 4352.

    12. [12]

      (a) Matsubara, H.; Ryu, I.; Schiesser, C. H. J. Org. Chem. 2005, 70, 3610; (b) Uenoyama, Y.; Fukuyama, T.; Nobuta, O.; Matsubara, H.; Ryu, I. Angew. Chem., Int. Ed. 2005, 44, 1075; (c) Fukuyama, T.; Nakashima, N.; Okada, T.; Ryu, I. J. Am. Chem. Soc. 2013, 135, 1006.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    4. [4]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    5. [5]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    6. [6]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    7. [7]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    8. [8]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    9. [9]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    12. [12]

      Yongqing Kuang Jie Liu Jianjun Feng Wen Yang Shuanglian Cai Ling Shi . Experimental Design for the Two-Step Synthesis of Paracetamol from 4-Hydroxyacetophenone. University Chemistry, 2024, 39(8): 331-337. doi: 10.12461/PKU.DXHX202403012

    13. [13]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    15. [15]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    16. [16]

      Xinghai Liu Hongke Wu . Exploration and Practice of Ideological and Political Education in Heterocyclic Chemistry Based on "Fentanyl" Event. University Chemistry, 2024, 39(8): 359-364. doi: 10.3866/PKU.DXHX202312100

    17. [17]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    18. [18]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    19. [19]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    20. [20]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

Metrics
  • PDF Downloads(15)
  • Abstract views(1532)
  • HTML views(399)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return