Citation: Wang Ziyan, Hira Khalid, Li Baili, Li Yao, Yu Xi, Hu Wenping. Tuning Rectification Properties of Molecular Electronic Devices by Mixed Monolayer[J]. Acta Chimica Sinica, ;2019, 77(10): 1031-1035. doi: 10.6023/A19050192 shu

Tuning Rectification Properties of Molecular Electronic Devices by Mixed Monolayer

  • Corresponding author: Yu Xi, xi.yu@tju.edu.cn
  • Received Date: 24 May 2019
    Available Online: 13 October 2019

    Fund Project: the National Natural Science Foundation of China 51733004the National Natural Science Foundation of China 51633006the National Natural Science Foundation of China 21773169Project supported by the National Natural Science Foundation of China (Nos. 21773169, 51633006, 51733004)

Figures(6)

  • We demonstrate in this work that the performance of self-assembled monolayer (SAM) molecular devices can be modulated by the composition and supramolecular structure of the molecular layer using mixed self-assembled monolayer strategy. We prepared the mixed monolayer on gold surface (with ca. 1 nm roughness) by co-adsorption of 11-(ferrocenyl)-undecanethiol (FUT, rectifier) and 1-undecanethiol (C11-SH, diluent). Micrometer scale molecular junctions were formed by using indium gallium eutectic alloy (EGaIn) as the top electrode. Electrical characterization of the junction found that the ratio of FUT and C11-SH molecules can tune the rectifying performance of the monolayer device:the higher the proportion of ferrocene is, the better the rectifying performance is. To our surprise, mixed monolayer prepared by 20% C11-SH and 80% FUT mixed solution exhibited higher rectification ratio than pure FUT monolayer, due to reduced leaking current. Surface reflective IR spectroscopy and the monolayer thickness characterization by the ellipsometer revealed loosely packed molecules on the surface in the pure FUT monolayer due to the bulky head group of the FUT and the rough gold substrate. FUT that partially lied down on the surface, or buried in the layer therefore created defects, which in turn become the origin of the leakage current. Upon insertion of C11-SH molecules in between the ferrocene molecules, the molecules in the monolayer become more ordered with the support of the C11-SH, as evidenced by decreased wave number of the C-H stretching mode of methylene group by reflective IR spectroscopy. Meanwhile, an increase in thickness for 80% FUT monolayer relative to pure FUT monolayer implied a better orientation of the FUT molecule in mixed monolayer. The ordered structure and better orientation largely improved the stability and reproducibility of the molecular device, reduced the leaking current and afforded higher rectification ratio. Our approach therefore provides a facile and effective strategy for regulating the performance of monolayer devices by molecule aggregation state.
  • 加载中
    1. [1]

      Jiang, L.; Huang, G. F.; Li, H. X.; Li, X. F.; Hu, W. P.; Liu, Y. Q.; Zhu, D. B. Prog. Chem. 2005, 17, 172 (in Chinese).  doi: 10.3321/j.issn:1005-281X.2005.01.020

    2. [2]

      Jia, C. C.; Guo, X. F. Chem. Soc. Rev. 2013, 42, 5642.  doi: 10.1039/c3cs35527f

    3. [3]

      Huang, C.; Rudnev, A. V.; Hong, W.; Wandlowski, T. Chem. Soc. Rev. 2015, 44, 889.  doi: 10.1039/C4CS00242C

    4. [4]

      Li, T.; Hu, W.; Zhu, D. Adv. Mater. 2010, 22, 286.  doi: 10.1002/adma.200900864

    5. [5]

      Xin, N.; Guan, J.; Zhou, C.; Chen, X.; Gu, C.; Li, Y.; Ratner, M. A.; Nitzan, A.; Stoddart, J. F.; Guo, X. Nat. Rev. Phys. 2019, 1, 211.  doi: 10.1038/s42254-019-0022-x

    6. [6]

      Pan, Z.-C.; Li, J.; Chen, L.; Tang, Y.; Shi, J.; Liu, J.; Liao, J.-L.; Hong, W. Sci. China Chem. 2019, 62, 1245.  doi: 10.1007/s11426-019-9493-6

    7. [7]

      Yuan, L.; Wang, L.; Garrigues, A. R.; Jiang, L.; Annadata, H. V.; Anguera Antonana, M.; Barco, E.; Nijhuis, C. A. Nat. Nanotechnol. 2018, 13, 322.  doi: 10.1038/s41565-018-0068-4

    8. [8]

      Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ. 2015, 36, 9 (in Chinese).
       

    9. [9]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116, 4318.  doi: 10.1021/acs.chemrev.5b00680

    10. [10]

      Yu, P.; Feng, A.; Zhao, S.; Wei, J.; Yang, Y.; Shi, J.; Hong, W. Acta Phys.-Chim. Sin. 2019, 35, 829 (in Chinese).  doi: 10.3866/PKU.WHXB201811027

    11. [11]

      Ai, Y.; Zhang, H. Acta Phys.-Chim. Sin. 2012, 28, 2237 (in Chinese).  doi: 10.3866/PKU.WHXB201209102

    12. [12]

      Chen, F.; Tao, N. J. Acc. Chem. Res. 2009, 42, 429.  doi: 10.1021/ar800199a

    13. [13]

      Chen, L. J.; Feng, A. N.; Wang, M. N.; Liu, J. y.; Hong, W. J.; Guo, X. F.; Xiang, D. Sci. China Chem. 2018, 61, 1368.  doi: 10.1007/s11426-018-9356-2

    14. [14]

      Liu, J.; Huang, X.; Wang, F.; Hong, W. Acc. Chem. Res. 2019, 52, 151.  doi: 10.1021/acs.accounts.8b00429

    15. [15]

      Zhang, X.; Li, T. Chin. Chem. Lett. 2017, 28, 2058.  doi: 10.1016/j.cclet.2017.09.008

    16. [16]

      Han, B.; Yu, X.; Hu, W. Chem. J. Chin. Univ. 2019, 40, 298 (in Chinese).  doi: 10.7503/cjcu20180629

    17. [17]

      Xu, X. N.; Han, B.; Yu, X.; Zhu, Y. Y. Acta Chim. Sinica 2019, 77, 485 (in Chinese).  doi: 10.11862/CJIC.2019.062
       

    18. [18]

      Yuan, L.; Jiang, L.; Zhang, B.; Nijhuis, C. A. Angew. Chem. Int. Ed. 2014, 53, 3377.  doi: 10.1002/anie.201309506

    19. [19]

      Tian, H.; Dai, Y.; Shao, H.; Yu, H.-Z. J. Phys. Chem. C 2013, 117, 1006.  doi: 10.1021/jp310012v

    20. [20]

      Nerngchamnong, N.; Yuan, L.; Qi, D. C.; Li, J.; Thompson, D.; Nijhuis, C. A. Nat Nanotechnol. 2013, 8, 113.  doi: 10.1038/nnano.2012.238

    21. [21]

      Weiss, E. A.; Chiechi, R. C.; Kaufman, G. K.; Kriebel, J. K.; Li, Z.; Duati, M.; Rampi, M. A.; Whitesides, G. M. J. Am. Chem. Soc. 2017, 129, 4336.

    22. [22]

      Nerngchamnong, N.; Thompson, D.; Cao, L.; Yuan, L.; Jiang, L.; Roemer, M.; Nijhuis, C. A. J. Phys. Chem. C 2015, 119, 21978.  doi: 10.1021/acs.jpcc.5b05137

    23. [23]

      Yuan, L.; Jiang, L.; Thompson, D.; Nijhuis, C. A. J. Am. Chem. Soc. 2014, 136, 6554.  doi: 10.1021/ja5007417

    24. [24]

      Miller, M. S.; Ferrato, M. A.; Niec, A.; Biesinger, M. C.; Carmichael, T. B. Langmuir. 2014, 30, 14171.  doi: 10.1021/la5032027

    25. [25]

      Vilan, A.; Aswal, D.; Cahen, D. Chem. Rev. 2017, 117, 4248.  doi: 10.1021/acs.chemrev.6b00595

    26. [26]

      Souto, M.; Diez-Cabanes, V.; Yuan, L.; Kyvik, A. R.; Ratera, I.; Nijhuis, C. A.; Cornil, J.; Veciana, J. Phys. Chem. Chem. Phys. 2018, 20, 25638.  doi: 10.1039/C8CP05488F

    27. [27]

      Gao, D.; Scholz, F.; Nothofer, H. G.; Ford, W. E.; Scherf, U.; Wessels, J. M.; Yasuda, A.; von Wrochem, F. J. Am. Chem. Soc. 2011, 133, 5921.  doi: 10.1021/ja110244j

    28. [28]

      Yuan, L.; Thompson, D.; Cao, L.; Nerngchangnong, N.; Nijhuis, C. A. J. Phys. Chem. C 2015, 119, 17910.  doi: 10.1021/acs.jpcc.5b04797

    29. [29]

      von Wrochem, F.; Gao, D.; Scholz, F.; Nothofer, H. G.; Nelles, G.; Wessels, J. M. Nat. Nanotechnol. 2010, 5, 618.  doi: 10.1038/nnano.2010.119

    30. [30]

      Thuo, M. M.; Reus, W. F.; Nijhuis, C. A.; Barber, J. R.; Kim, C.; Schulz, M. D.; Whitesides, G. M. J. Am. Chem. Soc. 2011, 133, 2962.  doi: 10.1021/ja1090436

    31. [31]

      Song, P.; Yuan, L.; Roemer, M.; Jiang, L.; Nijhuis, C. A. J. Am. Chem. Soc. 2016, 138, 5769.  doi: 10.1021/jacs.6b02208

    32. [32]

      Tian, H.; Xiang, D.; Shao, H.; Yu, H.-Z. J. Phys. Chem. C 2014, 118, 13733.  doi: 10.1021/jp5040745

    33. [33]

      Jin, J.; Kong, G. D.; Yoon, H. J. J. Phys. Chem. Lett. 2018, 9, 4578.  doi: 10.1021/acs.jpclett.8b01997

    34. [34]

      Kong, G. D.; Kim, M.; Cho, S. J.; Yoon, H. J. Angew. Chem. Int. Ed. 2016, 55, 10307.  doi: 10.1002/anie.201604748

    35. [35]

      Levine, I.; Weber, S. M.; Feldman, Y.; Bendikov, T.; Cohen, H.; Cahen, D.; Vilan, A. Langmuir 2012, 28, 404.  doi: 10.1021/la2035664

    36. [36]

      Chiechi, R. C.; Weiss, E. A.; Dickey, M. D.; Whitesides, G. M. Angew. Chem. Int. Ed. 2008, 47, 142.  doi: 10.1002/anie.200703642

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    3. [3]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    4. [4]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    7. [7]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    8. [8]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    9. [9]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    10. [10]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    11. [11]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    12. [12]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    13. [13]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    14. [14]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

    15. [15]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    16. [16]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    17. [17]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    18. [18]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    19. [19]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    20. [20]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

Metrics
  • PDF Downloads(16)
  • Abstract views(1732)
  • HTML views(318)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return