Citation: Li Zhong-Yuan, Jing Kun, Li Qi-Li, Wang Guan-Wu. Palladium-Catalyzed Decarboxylative Coupling of Potassium Oxalate Monoester with 2-Aryloxypyridines[J]. Acta Chimica Sinica, ;2019, 77(8): 729-734. doi: 10.6023/A19050190 shu

Palladium-Catalyzed Decarboxylative Coupling of Potassium Oxalate Monoester with 2-Aryloxypyridines

  • Corresponding author: Wang Guan-Wu, gwang@ustc.edu.cn
  • Received Date: 22 May 2019
    Available Online: 9 August 2019

    Fund Project: Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB20000000)the Strategic Priority Research Program of the Chinese Academy of Sciences XDB20000000

Figures(4)

  • Transition metal-catalyzed C—H activation has attracted extensive attention because of its excellent functional group tolerance and high efficiency. Among them, palladium-catalyzed reactions exhibit versatile catalytic cycles and have mild conditions compared to others. Therefore, the palladium-catalyzed C—H activation has been employed broadly as a practical strategy in synthetic chemistry during the past decade. Since the first example of palladium-catalyzed decarboxylative C—H acylation using α-oxocarboxylic acids was reported in 2008, a lot of substrates have been employed to synthesize acylated products due to the easily available α-oxocarboxylic acids as well as the importance of acylation. However, the transition metal-catalyzed C—H esterification via decarbonylation is still limited. Our group previously developed the first directed C—H esterification of methyl ketoximes and 2-phenylpyridines by using potassium oxalate monoester as the decarboxylative reagent. Encouraged by this impressive result as well as the importance of salicylate derivatives in drug discovery, herein we disclose the efficient palladium-catalyzed decarboxylative esterification of 2-aryloxpyridines. This reaction proceeds smoothly with potassium oxalate monoester, affording the desired products in moderate to good yields (50%~82%). Compared to our previous work, the electron-donating pyridinyloxy (PyO) group as the directing group and six-membered metallocycle intermediate dramatically enhance the practicability and substrate tolerance of the present method. In addition, one of the products has been chosen as the model compound to deprotect the directing group to get the valuable salicylate derivative. The present method not only provides an efficient and convenient protocol for the synthesis of ethyl salicylate derivatives, but also enriches the diversity of Pd(Ⅱ)/Pd(Ⅳ) catalytic reactions. A general procedure for the esterification of 2-aryloxypyridines 1 with potassium oxalate monoester 2 is as following:a mixture of 1 (0.5 mmol), Pd(OAc)2 (10 mol%), K2S2O8 (1.0 mmol), Ag2CO3 (1.0 mmol), 2 (1.0 mmol), D-CSA (0.125 mmol), and 1, 4-dioxane (2.5 mL) in a 25 mL tube was heated at 80℃ for a suitable time. The reaction mixture was cooled to room temperature, and concentrated in vacuo. Purification of the residue by column chromatography on silica gel with petroleum ether and ethyl acetate as the eluent provided the desired product 3.
  • 加载中
    1. [1]

    2. [2]

      For selected examples, see: (a) Dick, A. R.; Hull, K. L.; Sanford, M. S. J. Am. Chem. Soc. 2004, 126, 2300. (b) Giri, R.; Maugel, N.; Li, J.-J.; Wang, D.-H.; Breazzano, S. P.; Saunders, L. B.; Yu, J.-Q. J. Am. Chem. Soc. 2007, 129, 3510. (c) Gandeepan, P.; Cheng, C.-H. J. Am. Chem. Soc. 2012, 134, 5738.

    3. [3]

      For selected examples, see: (a) Hennings, D. D.; Iwasa, S.; Rawal, V. H. J. Org. Chem. 1997, 62, 2. (b) Satoh, T.; Kawamura, Y.; Miura, M.; Nomura, M. Angew. Chem., Int. Ed. Engl. 1997, 36, 1740.

    4. [4]

      Zhao, X.; Yeung, C. S.; Dong, V. M. J. Am. Chem. Soc. 2010, 132, 5837.  doi: 10.1021/ja100783c

    5. [5]

      (a) Xiao, B.; Fu, Y.; Xu, J.; Gong, T.-J.; Dai, J.-J.; Yi, J.; Liu, L. J. Am. Chem. Soc. 2010, 132, 468. (b) Dai, H.-X.; Li, G.; Zhang, X.-G.; Stepan, A. F.; Yu, J.-Q. J. Am. Chem. Soc. 2013, 135, 7567.

    6. [6]

      For selected examples, see: (a) Huang, C.; Chattopadhyay, B.; Gevorgyan, V. J. Am. Chem. Soc. 2011, 133, 12406. (b) Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2015, 54, 2255.

    7. [7]

      Kakiuchi, F.; Igi, K.; Matsumoto, M.; Hayamizu, T.; Chatani, N.; Murai, S. Chem. Lett. 2002, 3, 396.

    8. [8]

      Jia, X.; Zhang, S.; Wang, W.; Luo, F.; Cheng, J. Org. Lett. 2009, 11, 3120.  doi: 10.1021/ol900934g

    9. [9]

      (a) Ma, W.; Ackermann, L. Chem. Eur. J. 2013, 19, 13925. (b) Liu, B.; Jiang, H.-Z.; Shi, B.-F. J. Org. Chem. 2014, 79, 1521.

    10. [10]

      (a) Ackermann, L.; Diers, E.; Manvar, A. Org. Lett. 2012, 14, 1154. (b) Chu, J.-H.; Lin, P.-S.; Wu, M.-J. Organometallics 2010, 29, 4058.

    11. [11]

      Xu, Y.; Liu, P.; Li, S.-L.; Sun, P. J. Org. Chem. 2015, 80, 1269.  doi: 10.1021/jo5026095

    12. [12]

      Zhang, C.; Sun, P. J. Org. Chem. 2014, 79, 8457.  doi: 10.1021/jo5014146

    13. [13]

      (a) Liang, Y.-F.; Li, X.; Wang, X.; Yan, Y.; Feng, P.; Jiao, N. ACS Catal. 2015, 5, 1956. (b) Zhang, W.; Zhang, J.; Ren, S.; Liu, Y. J. Org. Chem. 2014, 79, 11508.

    14. [14]

      Lou, S.-J.; Chen, Q.; Wang, Y.-F.; Xu, D.-Q.; Du, X.-H.; He, J.-Q.; Mao, Y.-J.; Xu, Z.-Y. ACS Catal. 2015, 5, 2846.  doi: 10.1021/acscatal.5b00306

    15. [15]

      Yu, W.-Y.; Sit, W. N.; Lai, K.-M.; Zhou, Z.; Chan, A. S. C. J. Am. Chem. Soc. 2008, 130, 3304.  doi: 10.1021/ja710555g

    16. [16]

      Kochi, T.; Urano, S.; Seki, H.; Mizushima, E.; Sato, M.; Kakiuchi, F. J. Am. Chem. Soc. 2009, 131, 2792.  doi: 10.1021/ja8097492

    17. [17]

      Peng, X.; Zhu, Y.; Ramirez, T. A.; Zhao, B.; Shi, Y. Org. Lett. 2011, 13, 5244.  doi: 10.1021/ol2021252

    18. [18]

      Wang, S.; Yang, Z.; Liu, J.; Xie, K.; Wang, A.; Chen, X.; Tan, Z. Chem. Commun. 2012, 48, 9924.  doi: 10.1039/c2cc34473d

    19. [19]

      Liu, B.; Jiang, H.-Z.; Shi, B.-F. Org. Biomol. Chem. 2014, 12, 2538.  doi: 10.1039/c4ob00084f

    20. [20]

      Li, Z.-Y.; Wang, G.-W. Org. Lett. 2015, 17, 4866.  doi: 10.1021/acs.orglett.5b02422

    21. [21]

      For a review, see: (a) Wang, G.-W. Top. Organometal. Chem. 2016, 55, 119. For selected examples, see: (b) Wang, G.-W.; Yuan, T.-T.; Li, D.-D. Angew. Chem., Int. Ed. 2011, 50, 1380. (c) Li, Z.-Y.; Li, L.; Li, Q.-L.; Jing, K.; Xu, H.; Wang, G.-W. Chem. Eur. J. 2017, 23, 3285. (d) Jing, K.; Li, Z.-Y.; Wang, G.-W. ACS Catal. 2018, 8, 11875. (e) Jing, K.; Wang, X.-N.; Wang, G.-W. J. Org. Chem. 2019, 84, 161.

    22. [22]

      Zhang, Y.-H.; Yu, J.-Q. J. Am. Chem. Soc. 2009, 131, 14654.  doi: 10.1021/ja907198n

    23. [23]

      For selected example, see:Kim, M.; Park, J.; Sharma, S.; Kim, A.; Park, E.; Kwak, J. H.; Jung, Y. H.; Kim, I. S. Chem. Commun. 2013, 49, 925.  doi: 10.1039/C2CC38433G

    24. [24]

      Mashayekh, S.; Rahmanipour, N.; Mahmoodi, B.; Ahmadi, F.; Motaharian, D.; Shahhosseini, S.; Shafaroodi, H.; Banafshe, H. R.; Shafiee, A.; Navidpour, L. Bioorg. Med. Chem. 2014, 22, 1929.  doi: 10.1016/j.bmc.2014.01.041

    25. [25]

      Zhang, W.; Zhang, J.; Ren, S.; Liu, Y. J. Org. Chem. 2014, 79, 11508.  doi: 10.1021/jo502145v

  • 加载中
    1. [1]

      Liyang ZHANGDongdong YANGNing LIYuanyu YANGQi MA . Crystal structures, luminescent properties and Hirshfeld surface analyses of three cadmium(Ⅱ) complexes based on 2-(3-(pyridin-2-yl)-1H-pyrazol-1-yl)benzoate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1943-1952. doi: 10.11862/CJIC.20240079

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    5. [5]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    9. [9]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    12. [12]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    13. [13]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    16. [16]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    19. [19]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    20. [20]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

Metrics
  • PDF Downloads(17)
  • Abstract views(958)
  • HTML views(145)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return