Citation: Xiao Yingxia, Liu Zhong-Quan. adical-Promoted Cross Dehydrogenative Coupling of Ketones and Esters with Electron-Rich Heteroarenes[J]. Acta Chimica Sinica, ;2019, 77(9): 874-878. doi: 10.6023/A19050189 shu

adical-Promoted Cross Dehydrogenative Coupling of Ketones and Esters with Electron-Rich Heteroarenes

  • Corresponding author: Liu Zhong-Quan, liuzhq@lzu.edu.cn
  • Received Date: 21 May 2019
    Available Online: 21 September 2019

    Fund Project: the State Key Laboratory of Applied Organic Chemistry of Lanzhou University and the Nanjing University of Chinese Medicine AAAthe National Natural Science Foundation of China 21672089Project supported by the National Natural Science Foundation of China (No. 21672089), the State Key Laboratory of Applied Organic Chemistry of Lanzhou University and the Nanjing University of Chinese Medicine

Figures(4)

  • The cross dehydrogenative coupling (CDC) via highly selective C-H bond functionalization represents one of the most atom-economical, environmentally-benign and efficient synthetic strategies. For a long time, the cleavage of C-H bonds initiated by free radicals has been regarded as unselective and useless. However, more and more studies have shown that free radical mediated strategies could also achieve C-H bond functionalization in high selectivity recently. In general, it's well-known that nucleophilic free radical species tend to extract hydrogen atoms on electron-deficient C-H bonds, while electrophilic free radicals abstract hydrogen atoms on electron-rich C-H bonds. A recent study by our group shows that after thermal decomposition of peroxy tert-butyl ether, the electron-rich methyl radicals are produced. Then the radical cleavage of the C(sp3)-H bond in ketone/ester would happen prior to the α-carbonyl-C-H bond. Subsequently, the electrophilic α-carbonyl-C-centered radical selectively reacted with electron-rich olefins to afford new C-C bonds. Here, a free-radical initiated highly selective cross dehydrogenative coupling reaction of simple ketones and esters with electron-rich heteroarenes was demonstrated. The ketones and esters were used as solvent, and they would afford the corresponding α-carbonyl C-centered radicals, which then add to heteroaromatics leading to a series of C(2)-functionalized heterocycles. The chemoselectivity of this system was well-controlled by application of the polar effect of free radicals. In addition, this protocol features fast, simple operation, good functional group tolerance and site specific etc. The potential of this method was demonstrated through the synthesis of non-steroidal anti-inflammatory and analgesic drug tolmetin. It is expected to have wide applications in synthetic organic chemistry. Typical reaction conditions are as follows:a mixture of heteroarenes (1 equiv., 0.20 mmol), TBPA (3 equiv., 0.06 mmol) and ketones/esters (6 mL) was heated under reflux at 130℃ for about 1 h. After completion of the reaction, the crude product was cooled to room temperature, the excess solvent was recovered by rotary evaporator and the residue was further purified by column chromatography on silica gel to obtain the desired product (eluent:petroleum ether/ethyl acetate).
  • 加载中
    1. [1]

    2. [2]

    3. [3]

    4. [4]

      (a) Harris, E. F. P.; Waters, W. A. Nature 1952, 170, 212. (b) Walling, C. Pure Appl. Chem. 1967, 15, 69. (c) Tedder, J. M. Angew. Chem. Int. Ed. Engl. 1982, 21, 401. (d) Giese, B. Angew. Chem. Int. Ed. Engl. 1989, 28, 969. (e) Roberts, B. P. Chem. Soc. Rev. 1999, 28, 25.

    5. [5]

      Ravelli, D.; Fagnoni, M.; Fukuyama, T.; Nishikawa, T.; Ryu, I. ACS Catal. 2018, 8, 701.  doi: 10.1021/acscatal.7b03354

    6. [6]

      Tian, Y.; Sun, C.; Tan, R. X.; Liu, Z.-Q. Green Chem. 2018, 20, 588.  doi: 10.1039/C7GC03745G

    7. [7]

      (a) Snider, B. B. Chem. Rev. 1996, 96, 339. (b) Heiba, E. I.; Dessau, R. M. J. Am. Chem. Soc. 1971, 93, 524. (c) Iwahama, T.; Sakaguchi, S.; Ishii, Y. Chem. Commun. 2000, 2317. (d) Linker, U.; Kersten, B.; Linker, T. Tetrahedron 1995, 51, 9917. (e) Xie, J.; Huang, Z.-Z. Chem. Commun. 2010, 46, 1947. (f) Zhu, L.; Chen, H.; Wang, Z.; Li, C. Org. Chem. Front. 2014, 1, 1299. (g) Schweitzer-Chaput, B.; Demaerel, J.; Engler, H.; Klussmann, M. Angew. Chem., Int. Ed. 2014, 53, 8737. (h) Chu, X.; Meng, H.; Zi, Y.; Xu, X.-P.; Ji, S.-J. Chem.-Eur. J. 2014, 20, 17198. (i) Lan, X.; Wang, N.-X.; Zhang, W.; Wen, J.; Bai, C.; Xing, Y.-L.; Li, Y.-H. Org. Lett. 2015, 17, 4460. (j) Shiraishi, Y.; Tsukamoto, D.; Hirai, T. Org. Lett. 2008, 10, 3117. (k) Tsukamoto, D.; Shiraishi, Y.; Hirai, T. J. Org. Chem. 2010, 75, 1450.

    8. [8]

      (a) Liu, Z.-Q.; Li, Z. Chem. Commun. 2016, 52, 14278. (b) Xu, Z.; Hang, Z.; Chai, L.; Liu, Z.-Q. Org. Lett. 2016, 18, 4662.

  • 加载中
    1. [1]

      Tong LiLeping PanYan ZhangJihu SuKai LiKuiliang LiHu ChenQi SunZhiyong Wang . Electrochemical construction of 2,5-diaryloxazoles via N–H and C(sp3)-H functionalization. Chinese Chemical Letters, 2024, 35(4): 108897-. doi: 10.1016/j.cclet.2023.108897

    2. [2]

      Yi LuoLin Dong . Multicomponent remote C(sp2)-H bond addition by Ru catalysis: An efficient access to the alkylarylation of 2H-imidazoles. Chinese Chemical Letters, 2024, 35(10): 109648-. doi: 10.1016/j.cclet.2024.109648

    3. [3]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    4. [4]

      Shulei HuYu ZhangXiong XieLuhan LiKaixian ChenHong LiuJiang Wang . Rh(Ⅲ)-catalyzed late-stage C-H alkenylation and macrolactamization for the synthesis of cyclic peptides with unique Trp(C7)-alkene crosslinks. Chinese Chemical Letters, 2024, 35(8): 109408-. doi: 10.1016/j.cclet.2023.109408

    5. [5]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    6. [6]

      Jingping HuJing Xu . Total synthesis of a putative yuzurimine-type Daphniphyllum alkaloid C14epi-deoxycalyciphylline H. Chinese Chemical Letters, 2024, 35(4): 108733-. doi: 10.1016/j.cclet.2023.108733

    7. [7]

      Yujia ShiYan QiaoPengfei XieMiaomiao TianXingwei LiJunbiao ChangBingxian Liu . Rhodium-catalyzed enantioselective in situ C(sp3)−H heteroarylation by a desymmetrization approach. Chinese Chemical Letters, 2024, 35(10): 109544-. doi: 10.1016/j.cclet.2024.109544

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    10. [10]

      Pengfei ZhangQingxue MaZhiwei JiangXiaohua XuZhong Jin . Transition-metal-catalyzed remote meta-C—H alkylation and alkynylation of aryl sulfonic acids enabled by an indolyl template. Chinese Chemical Letters, 2024, 35(8): 109361-. doi: 10.1016/j.cclet.2023.109361

    11. [11]

      Yuemin ChenYunqi WuGuoao WangFeihu CuiHaitao TangYingming Pan . Electricity-driven enantioselective cross-dehydrogenative coupling of two C(sp3)-H bonds enabled by organocatalysis. Chinese Chemical Letters, 2024, 35(9): 109445-. doi: 10.1016/j.cclet.2023.109445

    12. [12]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    13. [13]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Yubang Li Xixi Hu Daiqian Xie . The microscopic formation mechanism of O + H2 products from photodissociation of H2O. Chinese Journal of Structural Chemistry, 2024, 43(5): 100274-100274. doi: 10.1016/j.cjsc.2024.100274

    19. [19]

      Lei WanYizhou TongXi LuYao Fu . Cobalt-catalyzed reductive alkynylation to construct C(sp)-C(sp3) and C(sp)-C(sp2) bonds. Chinese Chemical Letters, 2024, 35(7): 109283-. doi: 10.1016/j.cclet.2023.109283

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(15)
  • Abstract views(1485)
  • HTML views(408)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return