Citation: Zhao Weiwei, Wang Yilin. Development of Surfactant Application in Wastewater Treatment[J]. Acta Chimica Sinica, ;2019, 77(8): 717-728. doi: 10.6023/A19050185 shu

Development of Surfactant Application in Wastewater Treatment

  • Corresponding author: Wang Yilin, yilinwang@iccas.ac.cn
  • Received Date: 17 May 2019
    Available Online: 10 August 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21633002)the National Natural Science Foundation of China 21633002

Figures(7)

  • Water is the most important and essential component for the existing activities of human beings, animals and plants. It is estimated that the total amount of water on the earth is about 1.3 billion tons, but 97% of that is salty ocean water and not suitable for drinking. With the rapid growth of population, industrialization and agricultural modernization and other geological and environmental changes, the water environment is deteriorating continuously. Water pollution and water shortage are two of the most important environmental problems in the world. Consequently, water pollution has become a critical issue in recent years. Pollutants in wastewater include organic, inorganic, biological compounds. As many of them have serious toxicity and even show carcinogenic, the release of considerable amount of wastewater into environment causes damages to human being and aquatic conditions, and further leads to the shortage of water resources. Therefore, the need for wastewater treatment in a low-cost, safe and efficient way and improving the reuse efficiency of water resources have become a must. In recent years, surfactant-based separation techniques have made a great progress in industrial and analytical areas. It offers many advantages including low-energy consumption and environment protection, and has been proved efficient in the separation of many inorganic and organic pollutants. To enhance the application of surfactant-based separation techniques in wastewater treatment, it is very important to have a better understanding of the mechanisms involved in this process. The mechanism and development of surfactant-based wastewater treatment techniques, including micelle-enhanced ultrafiltration (MEUF), surfactant-modified solid phase adsorption and surfactant-based liquid-liquid phase separation are summarized. The effects of the surfactant characteristics, the chemistry of the pollutants and the solution conditions used in experiments on the extract kinetics and efficiencies are discussed. This review aims to provide reference and inspiration for researchers and promote the development of wastewater treatment technologies.
  • 加载中
    1. [1]

      Ali, I. Chem. Rev. 2012, 112, 5073.  doi: 10.1021/cr300133d

    2. [2]

      Clement, R. E.; Yang, P. W. Anal. Chem. 1997, 69, 251R.
       

    3. [3]

      Vandevivere, P. C.; Bianchi, R.; Verstraete, W. J. Chem. Technol. Biotechnol. 1998, 72, 289.

    4. [4]

      Leonard, S. S.; Bower, J. J.; Shi, X. Mol. Cell. Biochem. 2004, 255, 3.
       

    5. [5]

      Samanta, S. K.; Singly, O. V.; Jain, R. K. Trends Biotechnol. 2002, 20, 243.  doi: 10.1016/S0167-7799(02)01943-1

    6. [6]

      Gupta, V. K.; Carrott, P. J. M.; Ribeiro Carrott, M. M. L.; Suhas. Crit. Rew. Env. Sci. Tec. 2009, 39, 783.  doi: 10.1080/10643380801977610

    7. [7]

      Sethi, S.; Wiesner, M. R. J. Environ. Eng. Div. ASCE 1995, 121, 874.

    8. [8]

      Eliassen, R.; Bennet, G. E. J. Water Pollut. Control Fed. 1967, 39, R82.

    9. [9]

      Lee, D. W.; Hong, W. H.; Hwang, K. Y. Sep. Sci. Technol. 2000, 35, 1951.

    10. [10]

      Hempfling, C. Environ. Prog. 1997, 16, 164.  doi: 10.1002/ep.3300160311

    11. [11]

      Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.  doi: 10.1021/cr00017a016

    12. [12]

      Nicolet, L.; Rott, V. Water Sci. Technol. 1999, 40, 191.

    13. [13]

      LaPara, T. M.; Konopka, A.; Nakatsu, C. H.; Alleman, J. E. J. Environ. Eng. ASCE 2000, 126, 739.  doi: 10.1061/(ASCE)0733-9372(2000)126:8(739)

    14. [14]

      Yang, X.; Cai, H.; Bao, M.; Yu, J.; Lu, J.; Li, Y. Chin. J. Chem. 2017, 35, 1549.  doi: 10.1002/cjoc.201700202

    15. [15]

      Huang, X.; Wang, W.; Ling, L.; Zhang, W. Acta Chim. Sinica 2017, 75, 529.
       

    16. [16]

      Zhou, L. Acta Chim. Sinica 2017, 75, 552.
       

    17. [17]

      Tang, J.; Tang, L.; Feng, H.; Dong, H.; Zhang, Y.; Liu, S.; Zeng, G. Acta Chim. Sinica 2017, 75, 575.  doi: 10.7503/cjcu20160676

    18. [18]

      Xia, X.; Hua, Y.; Huang, X.; Ling, L.; Zhang, W. Acta Chim. Sinica 2017, 75, 594.
       

    19. [19]

      Jia, F.; Liu, J.; Zhang, L. Acta Chim. Sinica 2017, 75, 602.  doi: 10.3866/PKU.WHXB201611251
       

    20. [20]

      Zhao, G.; Zhu, B. Principles of Surfactant Action, Chinese Light Industry Press, Beijing, 2003.

    21. [21]

      Fan, Y.; Han, Y.; Wang, Y. L. Acta Phys.-Chim. Sin. 2016, 32, 214.  doi: 10.3866/PKU.WHXB201511022

    22. [22]

      Gibbs, B. F.; Kermasha, S.; Alli, I.; Mulligan, C. N. Int. J. Food Sci. Nutr. 1999, 50, 213.  doi: 10.1080/096374899101256

    23. [23]

      Hinze, W. L.; Pramauro, E. Crit. Rev. Anal. Chem. 1993, 24, 133.

    24. [24]

      Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525.  doi: 10.1039/f29767201525

    25. [25]

      Ravi Kumar, M. N. V. React. Funct. Polym. 2000, 46, 1.

    26. [26]

      Rosen, M. J. Surfactants and Interfacial Properties, John Wiley & Sons, New York, 1978.

    27. [27]

      Tanford, C. The Hydrophobic Effect:Formation of Micelles and Biological Membranes, Wiley, New York, 1980.

    28. [28]

      Zana, R. Structure-Performance Relationships in Surfactants, Marcel Dekker, New York, 1997.

    29. [29]

      Pastrana-Martínez, L. M.; Morales-Torres, S.; Figueiredo, J. L.; Faria, J. L.; Silva, A. M. T. Water Res. 2015, 77, 179.

    30. [30]

      Syafei, A. D.; Lin, C.-F.; Wu, C.-H. J. Colloid Interf. Sci. 2008, 323, 112.  doi: 10.1016/j.jcis.2008.03.037

    31. [31]

      Secondes, M. F. N.; Naddeo, V.; Belgiorno, V.; Ballesteros-Jr, F. J. Harzard. Mater. 2014, 264, 342.  doi: 10.1016/j.jhazmat.2013.11.039

    32. [32]

      Ren, Y.; Lia, T.; Zhang, W.; Wang, S.; Shi, M.; Shan, C.; Zhang, W.; Guan, X.; Lv, L.; Hua, M.; Pan, B. J. Harzard. Mater. 2019, 365, 312.  doi: 10.1016/j.jhazmat.2018.11.013

    33. [33]

      Choi, Y.-K.; Lee, S.-B.; Lee, D.-J.; Ishigami, Y.; Kajiuchi, T. J. Membr. Sci. 1998, 148, 185.

    34. [34]

      Xu, K.; Zeng, G.-M.; Huang, J.-H.; Wu, J.-Y.; Fang, Y.-Y.; Huang, G.; Li, J.; Xi, B.; Liu, H. Colloids Surf., A 2007, 294, 140.  doi: 10.1016/j.colsurfa.2006.08.017

    35. [35]

      Gzara, L.; Dhahbi, M. Desalination 2001, 137, 241.  doi: 10.1016/S0011-9164(01)00225-9

    36. [36]

      Ahmad, A. L.; Puasa, S. W. Chem. Eng. J. 2007, 132, 257.  doi: 10.1016/j.cej.2007.01.005

    37. [37]

      Bielska, M.; Szymanowski, J. Water Res. 2006, 40, 1027.  doi: 10.1016/j.watres.2005.12.027

    38. [38]

      Talens-Alesson, F. I.; Urbaski, R.; Szymanowski, J. Colloids Surf., A 2001, 178, 71.  doi: 10.1016/S0927-7757(00)00495-7

    39. [39]

      Xiarchos, I.; Jaworska, A.; Zakrzewska-Trznadel, G. J. Membr. Sci. 2008, 321, 222.  doi: 10.1016/j.memsci.2008.04.065

    40. [40]

      Landaburu-Aguirre, J.; Pongracz, E.; Peramaki, P.; Keiski, R. L. J. Hazard. Mater. 2010, 180, 524.  doi: 10.1016/j.jhazmat.2010.04.066

    41. [41]

      Landaburu-Aguirre, J.; García, V.; Pongrácz, E.; Keiski, R. L. Desalination 2009, 240, 262.

    42. [42]

      Son, G.; Lee, S. Korean J. Chem. Eng. 2011, 28, 793.  doi: 10.1007/s11814-010-0427-9

    43. [43]

      Rafique, R. F.; Chowdhury, Z. Z.; Moon, J.; Lee, S. Int. J. Innov. Eng. Technol. 2018, 10, 112.  doi: 10.21817/ijet/2018/v10i1/181001012

    44. [44]

      Channarong, B.; Lee, S. H.; Bade, R.; Shipin, O. V. Desalination 2010, 262, 221.  doi: 10.1016/j.desal.2010.06.016

    45. [45]

      Scamehorn, J. F.; Christian, S. D.; El-Sayed, D. A.; Uchiyama, H.; Younis, S. S. Sep. Sci. Technol. 1994, 29, 809.  doi: 10.1080/01496399408006627

    46. [46]

      Li, X.; He, S.; Feng, C.; Zhu, Y.; Pang, Y.; Hou, J.; Luo, K.; Liao, X. Sustainability 2018, 10, 92.  doi: 10.3390/su10010092

    47. [47]

      Kim, H.; Baek, K.; Kim, B.-K.; Shin, H.-J.; Yang, J.-W. Korean J. Chem. Eng. 2008, 25, 253.  doi: 10.1007/s11814-008-0045-y

    48. [48]

      Schwarze, M.; Gro , M.; Moritz, M.; Buchner, G.; Kapitzki, L.; Chiappisi, L.; Gradzielski, M. J. Membr. Sci. 2015, 478, 140.

    49. [49]

      Yang, H. S.; Han, K. H.; Kang, D. W.; Kim, Y. H. Korean J. Chem. Eng. 1996, 13, 448.  doi: 10.1007/BF02705992

    50. [50]

      Akita, S.; Castillo, L. P.; Nii, S.; Takahashi, K.; Takeuchi, H. J. Membr. Sci. 1999, 162, 111.  doi: 10.1016/S0376-7388(99)00128-3

    51. [51]

      Ferella, F.; Prisciandaro, M.; De Michelis, I.; Veglio, F. Desalination 2007, 207, 125.

    52. [52]

      Huang, J.; Li, H.; Zeng, G.; Shi, L.; Gu, Y.; Shi, Y.; Tang, B.; Li, X. Sep. Purif. Technol. 2018, 207, 199.  doi: 10.1016/j.seppur.2018.06.039

    53. [53]

      Nekoo, A. B.; Khamforoush, M. Iran. Polym. J. 2019, 28, 391.  doi: 10.1007/s13726-019-00708-4

    54. [54]

      Bade, R; Lee, S. H.; Jo, S.; Lee, H.-S.; Lee, S.-E. Desalination 2008, 229, 264.  doi: 10.1016/j.desal.2007.10.015

    55. [55]

      Baek, K.; Yang, J.-W. J. Harzard. Mater. 2004, 108, 119.  doi: 10.1016/j.jhazmat.2004.02.001

    56. [56]

      Abbasi-Garravand, E.; Mulligan, C. N. Sep. Purif. Technol. 2014, 132, 505.  doi: 10.1016/j.seppur.2014.06.010

    57. [57]

      Bahmani, P.; Maleki, A.; Rezaee, R.; Mahvi, A. H.; Khamforoush, M.; Athar, S. D.; Daraei, H.; Gharibi, F.; McKay, G. J. Environ. Health. Sci. Eng. 2019, 17, 115.  doi: 10.1007/s40201-018-00332-z

    58. [58]

      Baek, K.; Kim, B.-K.; Cho, H.-J.; Yang, J.-W. J. Harzard. Mater. 2003, 99, 303.  doi: 10.1016/S0304-3894(03)00063-3

    59. [59]

      Zaghbani, N.; Hafiane, A.; Dhahbi, M. Desalination 2008, 222, 348.

    60. [60]

      Bielska, M.; Prochaska, K. Dyes Pigm. 2007, 74, 410.  doi: 10.1016/j.dyepig.2006.03.001

    61. [61]

      Huang, J.-H.; Zhou, C.-F.; Zeng, G.-M.; Li, X.; Niu, J.; Huang, H.-J.; Shi, L.-J.; He, S.-B. J. Membr. Sci. 2010, 365, 138.

    62. [62]

      Wasan, D. T.; Ginn, M. E.; Shah, D. O. Surfactant Science Series:Surfactants in Chemical/Process, Marcel Dekker, New York, 1998.

    63. [63]

      Purkait, M. K.; DasGupta, S.; De, S. Sep. Purif. Technol. 2004, 37, 81.  doi: 10.1016/j.seppur.2003.08.005

    64. [64]

      Purkait, M. K.; DasGupta, S.; De, S. J. Colloid Interface Sci. 2004, 270, 496.

    65. [65]

      Schwarze, M.; Schaefer, L.; Chiappisi, L.; Gradzielski, M. Sep. Purif. Technol. 2018, 199, 20.  doi: 10.1016/j.seppur.2018.01.043

    66. [66]

      Rubio, S.; Pérez-Bendito, D. TrAC, Trends Anal. Chem. 2003, 22, 470.

    67. [67]

      Yin, C. Y.; Aroua, M. K.; Ashri, W. M.; Daud, W. Sep. Purif. Technol. 2007, 52, 403.  doi: 10.1016/j.seppur.2006.06.009

    68. [68]

      Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanp , M. Chem. Eng. J. 2013, 219, 499.  doi: 10.1016/j.cej.2012.12.038

    69. [69]

      Reeve, P. J.; Fallowfield, H. J. J. Environ. Manage. 2018, 205, 253.  doi: 10.1016/j.jenvman.2017.09.077

    70. [70]

      Jiménez-Castañeda, M. E.; Medina, D. I. Water 2017, 9, 235.  doi: 10.3390/w9040235

    71. [71]

      Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Appl. Clay Sci. 2016, 123, 239.

    72. [72]

      Ahn, C. K.; Park, D.; Woo, S. H.; Park, J. M. J. Hazard. Mater. 2009, 164, 1130.

    73. [73]

      Farooq, W.; Hong, H.-J.; Kim, E. J.; Yang, J.-W. Sep. Sci. Technol. 2012, 47, 1906.

    74. [74]

      Chen, W.-F.; Zhang, Z.-Y.; Li, Q.; Wang, H.-Y. Chem. Eng. J. 2012, 203, 319.  doi: 10.1016/j.cej.2012.07.047

    75. [75]

      Hong, H.-J.; Kim, H.; Baek, K.; Yang, J.-W. Desalination 2008, 223, 221.  doi: 10.1016/j.desal.2007.01.210

    76. [76]

      Monser, L.; Adhoum, N. Sep. Purif. Technol. 2002, 26, 137.  doi: 10.1016/S1383-5866(01)00155-1

    77. [77]

      Mohamed, M. M. J. Colloid Interface Sci. 2004, 272, 28.  doi: 10.1016/j.jcis.2003.08.071

    78. [78]

      Choi, H. D.; Shin, M. C.; Kim, D. H.; Jeon, C. S.; Baek, K. Desalination 2008, 223, 290.  doi: 10.1016/j.desal.2007.01.224

    79. [79]

      Mahmoud, M. E.; Nabil, G. M.; El-Mallah, N. M.; Karar, S. B. Desalin. Water Treat. 2016, 57, 8389.

    80. [80]

      Nabil, G. M.; El-Mallah, N. M.; Mahmoud, M. E. J. Ind. Eng. Chem. 2014, 20, 994.  doi: 10.1016/j.jiec.2013.06.034

    81. [81]

      Dong, Y.; Wu, D.; Chen, X.; Lin, Y. J. Colloid Interface Sci. 2010, 348, 585.  doi: 10.1016/j.jcis.2010.04.074

    82. [82]

      Ghiaci, M.; Kia, R.; Abbaspur, A.; Seyedeyn-Azad, F. Sep. Purif. Technol. 2004, 40, 285.

    83. [83]

      Bowman, R. S. Microporous Mesoporous Mater. 2003, 61, 43.  doi: 10.1016/S1387-1811(03)00354-8

    84. [84]

      Macedo-Miranda, M. G.; Olguín, M. T. J. Inclusion Phenom. Macrocyclic Chem. 2007, 59, 131.  doi: 10.1007/s10847-007-9306-3

    85. [85]

      Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. J. Hazard. Mater. 2009, 162, 204.  doi: 10.1016/j.jhazmat.2008.05.024

    86. [86]

      Widiastuti, N.; Wu, H.; Ang, M.; Zhang, D.-K. Desalination 2008, 218, 271.  doi: 10.1016/j.desal.2007.02.022

    87. [87]

      Naghash, A.; Nezamzadeh-Ejhieh, A. J. Ind. Eng. Chem. 2015, 31, 185.

    88. [88]

      Wingenfelder, U.; Furrer, G.; Schulin, R. Microporous Mesoporous Mater. 2006, 95, 265.

    89. [89]

      Haggerty, G. M.; Bowman, R. S. Environ. Sci. Technol. 1994, 28, 452.

    90. [90]

      Liu, J.; Huang, H.; Huang, R.; Zhang, J. Z.; Hao, S. S.; Shen, Y. Y.; Chen, H. Water Environ. Res. 2016, 88, 490.  doi: 10.2175/106143016X14504669767850

    91. [91]

      Cortés-Martínez, R.; Martínez-Miranda, V.; Solache-Ríos, M.; García-Sosa, I. Sep. Sci. Technol. 2004, 39, 2711.  doi: 10.1081/SS-200026766

    92. [92]

      Torabian, A.; Kazemian, H.; Seifi, L.; Bidhendi, G. N.; Azimi, A. A.; Ghadiri, S. K. Clean:-Soil, Air, Water 2010, 38, 77.  doi: 10.1002/clen.200900157

    93. [93]

      Abatal, M.; Olguin, M. T. Environm. Earth Sci. 2013, 69, 2691.  doi: 10.1007/s12665-012-2091-3

    94. [94]

      Elsheikh, A. F.; Ahmad, U. K.; Ramli, Z. Desalin. Water Treat. 2016, 57, 8302.  doi: 10.1080/19443994.2015.1021846

    95. [95]

      Benkli, Y. E.; Can, M. F.; Turan, M.; Çelik, M. S. Water Res. 2005, 39, 487.

    96. [96]

      Tomašević-Čanović, M.; Daković, A.; Rottinghaus, G.; Matijašević, S.; Đuričić, M. Microporous Mesoporous Mater. 2003, 61, 173.

    97. [97]

      Nikashina, V. A.; Myasoedov, B. F. In Natural Microporous Materials in Environmental Technology, Eds.: Misaelides, P.; Macášek, F.; Pinnavaia, T. J.; Colella, C., Springer Netherlands, Dordrecht, 1999, p. 335.

    98. [98]

      Xie, Q.; Lin, Y.; Wu, D.; Kong, H. Fuel 2017, 203. 411.

    99. [99]

      Shirzadi, H.; Nezamzadeh-Ejhieh, A. J. Mol. Liq. 2017, 230, 221.

    100. [100]

      Trana, H. N.; Vietb, P. V.; Chao, H.-P. Ecotoxicol. Environ. Saf. 2018, 147, 55.

    101. [101]

      Liu, C. M.; Wu, P. X.; Zhu, Y. J.; Tran, L. T. Chemosphere 2016, 144, 1026.  doi: 10.1016/j.chemosphere.2015.09.063

    102. [102]

      Jordan, J. W. J. Phys. Chem. 1949, 53, 294.  doi: 10.1021/j150467a009

    103. [103]

      Smith, J. A.; Galan, A. Environ. Sci. Technol. 1995, 29, 685.  doi: 10.1021/es00003a016

    104. [104]

      Shen, Y. Chemosphere 2001, 44, 989.  doi: 10.1016/S0045-6535(00)00564-6

    105. [105]

      Zhu, L.; Chen, B. Environ. Sci. Technol. 2000, 34, 2997.

    106. [106]

      Zhu, L.; Chen, B.; Shen, X. Environ. Sci. Technol. 2000, 34, 468.

    107. [107]

      Zhu, L.; Li, Y.; Zhang, J. Environ. Sci. Technol. 1997, 31, 1407.

    108. [108]

      Ma, J.; Zhu, L. Chemosphere 2007, 68, 1883.  doi: 10.1016/j.chemosphere.2007.03.002

    109. [109]

      Wu, Z.; Zhu, L. J. Environ. Sci.-China 2012, 24, 248.  doi: 10.1016/S1001-0742(11)60780-8

    110. [110]

      Nourmoradi, H.; Khiadani, M.; Nikaeen, M. J. Chem. 2013, 2013, 1.

    111. [111]

      Chen, D. M.; Chen, J.; Luan, X. L.; Ji, H. P.; Xia, Z. G. Chem. Eng. J. 2011, 171, 1150.

    112. [112]

      Chen, D. M.; Chen, J.; Wang, X. M.; Luan, X. L.; Ji, H. P.; Xu, F. Adv. Mater. Res. 2011, 178, 29.

    113. [113]

      Wang, L.; Wang, A. J. Hazard. Mater. 2008, 160, 173.  doi: 10.1016/j.jhazmat.2008.02.104

    114. [114]

      Acisli, O.; Khataee, A.; Karaca, S.; Sheydaei, M. Ultrason. Sonochem. 2016, 31, 116.

    115. [115]

      Lin, S.-H.; Juang, R.-S. J. Hazard. Mater. 2002, 92, 315.  doi: 10.1016/S0304-3894(02)00026-2

    116. [116]

      Malakul, P.; Srinivasan, K. R.; Wang, H. Y. Ind. Eng. Chem. Res. 1998, 37, 4296.  doi: 10.1021/ie980057i

    117. [117]

      Li, S.-Z.; Wu, P.-X. J. Hazard. Mater. 2010, 173, 62.  doi: 10.1016/j.jhazmat.2009.08.047

    118. [118]

      Özcan, A. S.; Gök, Ö.; Özcan, A. J. Hazard. Mater. 2009, 161, 499.  doi: 10.1016/j.jhazmat.2008.04.002

    119. [119]

      Zhu, R.; Zhu, L.; Zhu, J. Environ. Sci. 2006, 27, 91.

    120. [120]

      Ma, J.; Zhu, L. J. Harzard. Mater. 2006, 136, 982.  doi: 10.1016/j.jhazmat.2006.01.046

    121. [121]

      Bungenberg de Jong, H. G. Colloid Science, Elsevier, Amsterdam, 1949.

    122. [122]

      Bohidar, H. B. J. Surface Sci. Technol. 2008, 24, 105.

    123. [123]

      Veis, A. Adv. Colloid Interface Sci. 2011, 167, 2.  doi: 10.1016/j.cis.2011.01.007

    124. [124]

      Kizilay, E.; Kayitmazer, A. B.; Dubin, P. L. Adv. Colloid Interface Sci. 2011, 167, 24.  doi: 10.1016/j.cis.2011.06.006

    125. [125]

      Michaeli, I.; Overbeek, J. T. G.; Voorn, M. J. J. Polym. Sci. 1957, 23, 443.

    126. [126]

      Sato, H.; Nakajima, A. Colloid. Polym. Sci. 1974, 252, 944.  doi: 10.1007/BF01566615

    127. [127]

      Wang, M.; Wang, Y. L. Soft Matter 2014, 10, 7909.  doi: 10.1039/C4SM01386G

    128. [128]

      Zhao, W.; Wang, Y. L. Adv. Colloid Interface Sci. 2017, 239, 199.  doi: 10.1016/j.cis.2016.04.005

    129. [129]

      Ruan, K.; Xiao, J.; Zhang, L.; Zhao, Z.; Zhang, Y. Acta Chim. Sinica 2002, 60, 961.
       

    130. [130]

      Corti, M.; Degiorgio, V. Phys. Rev. Lett. 1985, 55, 2005.

    131. [131]

      Lindman, B.; Carlsson, A.; Karlström, G.; Malmsten, M. Adv. Colloid Interface Sci. 1990, 32, 183.  doi: 10.1016/0001-8686(90)80018-U

    132. [132]

      Cohen, I.; Economou, P. J. Phys. Chem. 1964, 68, 2801.  doi: 10.1021/j100792a010

    133. [133]

      Cohen, I.; Economou, P. J. Am. Oil Chem. Soc. 1964, 41, 461.  doi: 10.1007/BF02670022

    134. [134]

      Cohen, I.; Economou, P.; Libackyj, A. J. Phys. Chem. 1962, 66, 1829.  doi: 10.1021/j100816a013

    135. [135]

      Cohen, I.; Hiskey, C. F.; Oster, G. J. Colloid Sci. 1954, 9, 243.  doi: 10.1016/0095-8522(54)90019-7

    136. [136]

      Cohen, I.; Vassiliades, T. J. Phys. Chem. 1961, 65, 1774.  doi: 10.1021/j100827a021

    137. [137]

      Cohen, I.; Vassiliades, T. J. Am. Oil Chem. Soc. 1962, 39, 246.  doi: 10.1007/BF02631703

    138. [138]

      Wang, M.; Fan, Y.; Han, Y.; Nie, Z.; Wang, Y. L. Langmuir 2013, 29, 14839.  doi: 10.1021/la403582y

    139. [139]

      Hoffmann, H.; Thunig, C.; Munkert, U.; Meyer, H. W.; Richter, W. Langmuir 1992, 8, 2629.

    140. [140]

      Horbaschek, K.; Hoffmann, H.; Thunig, C. J. Colloid Interface Sci. 1998, 206, 439.  doi: 10.1006/jcis.1998.5690

    141. [141]

      Casero, I.; Sicilia, D.; Rubio, S.; Pérez-Bendito, D. Anal. Chem. 1999, 71, 4519.  doi: 10.1021/ac990106g

    142. [142]

      Paleologos, E. K.; Giannakopoulos, S. S.; Zygoura, P. D.; Kontominas, M. G. J. Agric. Food Chem. 2006, 54, 5236.  doi: 10.1021/jf060273z

    143. [143]

      Li, Y.; Dubin, P. L.; Havel, H. A.; Edwards, S. L.; Dautzenberg, H. Langmuir 1995, 11, 2486.  doi: 10.1021/la00007a029

    144. [144]

      Wang, Y. L.; Kimura, K.; Dubin, P. L.; Jaeger, W. Macromolecules 2000, 33, 3324.

    145. [145]

      Wang, Y. L.; Kimura, K.; Huang, Q.; Dubin, P. L.; Jaeger, W. Macromolecules 1999, 32, 7128.

    146. [146]

      Dubin, P. L.; Li, Y.; Jaeger, W. Langmuir 2008, 24, 4544.

    147. [147]

      Löf, D.; Niemiec, A.; Schillén, K.; Loh, W.; Olofsson, G. J. Phys. Chem. B 2007, 111, 5911.  doi: 10.1021/jp071101n

    148. [148]

      Carlsson, A.; Karlströem, G.; Lindman, B. Langmuir 1986, 2, 536.  doi: 10.1021/la00070a027

    149. [149]

      Hashidzume, A.; Ohara, T.; Morishima, Y. Langmuir 2002, 18, 9211.  doi: 10.1021/la020493g

    150. [150]

      Thalberg, K.; Lindman, B.; Bergfeldt, K. Langmuir 1991, 7, 2893.  doi: 10.1021/la00060a005

    151. [151]

      Thalberg, K.; Lindman, B.; Karlströem, G. J. Phys. Chem. 1991, 95, 3370.

    152. [152]

      Watanabe, H.; Tanaka, H. Talanta 1978, 25, 585.  doi: 10.1016/0039-9140(78)80151-9

    153. [153]

      Bordier, C. J. Biol. Chem. 1981, 256, 1604.

    154. [154]

      Ballesteros-Gómez, A.; Sicilia, M. D.; Rubio, S. Anal. Chim. Acta 2010, 677, 108.  doi: 10.1016/j.aca.2010.07.027

    155. [155]

      Trakultamupatam, P.; Scamehorn, J. F.; Osuwan, S. Sep. Sci. Technol. 2002, 37, 1291.

    156. [156]

      Kungsanant, S.; Kittisrisawai, S.; Suriya-Amrit, P.; Kitiyanan, B.; Chavadej, S.; Osuwan, S.; Scamehorn, J. F. Sep. Sci. Technol. 2018, 53, 2662.

    157. [157]

      Pino, V.; Ayala, J. H.; Afonso, A. M.; González, V. J. Chromatogr. A 2002, 949, 291.  doi: 10.1016/S0021-9673(01)01589-8

    158. [158]

      Song, G. Q.; Lu, C.; Hayakawa, K.; Lin, J.-M. Anal. Bioanal. Chem. 2006, 384, 1007.

    159. [159]

      Taechangam, P.; Scamehorn, J. F.; Osuwan, S.; Rirksomboon, T. Colloids Surf., A 2009, 347, 200.  doi: 10.1016/j.colsurfa.2009.04.005

    160. [160]

      Mahugo Santana, C.; Sosa Ferrera, Z.; Santana Rodriguez, J. J. Analyst 2002, 127, 1031.

    161. [161]

      Haddou, B.; Canselier, J. P.; Gourdon, C. Sep. Purif. Technol. 2006, 50, 114.

    162. [162]

      Ghouas, H.; Haddou, B.; Kameche, M.; Canselier, J. P.; Gourdon, C. J. Surfactants Deterg. 2016, 19, 57.  doi: 10.1007/s11743-015-1764-9

    163. [163]

      Pourreza, N.; Rastegarzadeh, S.; Larki, A. Talanta 2008, 77, 733.  doi: 10.1016/j.talanta.2008.07.031

    164. [164]

      Liu, W.; Zhao, W.; Chen, J.; Yang, M. Anal. Chim. Acta 2007, 605, 41.  doi: 10.1016/j.aca.2007.10.034

    165. [165]

      Appusamy, A.; John, I.; Ponnusamy, K.; Ramalingam, A. Eng. Sci. Technol. Int. J. 2014, 17, 137.  doi: 10.1016/j.jestch.2014.04.008

    166. [166]

      Zhou, J.; Chen, J.; Cheng, Y.; Li, D.; Hu, F.; Li, H. Talanta 2009, 79, 189.

    167. [167]

      Lee, C.-K.; Su, W.-D. Sep. Sci. Technol. 1999, 34, 3267.

    168. [168]

      Andreia Mesquita da Silva, M.; Lúcia Azzolin Frescura, V.; José Curtius, A. Spectrochim. Acta, Part B 2001, 56, 1941.  doi: 10.1016/S0584-8547(01)00323-8

    169. [169]

      Chen, J.; Teo, K. C. Anal. Chim. Acta 2001, 450, 215.  doi: 10.1016/S0003-2670(01)01367-8

    170. [170]

      Chen, J.; Teo, K. C. Anal. Chim. Acta 2001, 434, 325.  doi: 10.1016/S0003-2670(01)00849-2

    171. [171]

      Lázaro Gallindo Borges, D.; Mesquita Silva da Veiga, M. A.; Azzolin Frescura, V. L.; Welz, B.; Curtius, A. J. J. Anal. At. Spectrom. 2003, 18, 501.  doi: 10.1039/b209680c

    172. [172]

      Manzoori, J. L.; Bavili-Tabrizi, A. Anal. Chim. Acta 2002, 470, 215.  doi: 10.1016/S0003-2670(02)00765-1

    173. [173]

      Manzoori, J. L.; Karim-Nezhad, G. Anal. Chim. Acta 2003, 484, 155.  doi: 10.1016/S0003-2670(03)00343-X

    174. [174]

      Manzoori, J. L.; Karim-Nezhad, G. Anal. Sci. 2003, 19, 579.  doi: 10.2116/analsci.19.579

    175. [175]

      Teo, K. C.; Chen, J. Analyst 2001, 126, 534.

    176. [176]

      Satti, A. A.; Durukan Temuge, İ.; Bektas, S.; Arpa Şahin, . Turk. J. Chem. 2016, 40, 979.

    177. [177]

      Trakultamupatam, P.; Scamehorn, J. F.; Osuwan, S. Sep. Sci. Technol. 2002, 37, 1291.  doi: 10.1081/SS-120002612

    178. [178]

      Pourreza, N.; Zareian, M. J. Hazard. Mater. 2009, 165, 1124.  doi: 10.1016/j.jhazmat.2008.10.132

    179. [179]

      de Wuilloud, J. C. A.; Wuilloud, R. G.; Sadi, B. B. M.; Caruso, J. A. Analyst 2003, 128, 453.  doi: 10.1039/b300862m

    180. [180]

      Kukusamude, C.; Santalad, A.; Boonchiangma, S.; Burakham, R.; Srijaranai, S.; Chailapakul, O. Talanta 2010, 81, 486.  doi: 10.1016/j.talanta.2009.12.029

    181. [181]

      Zarei, A. R. Anal. Biochem. 2007, 369, 161.  doi: 10.1016/j.ab.2007.06.039

    182. [182]

      Sicilia, D.; Rubio, S.; Pérez-Bendito, D. Anal. Chim. Acta 2002, 460, 13.  doi: 10.1016/S0003-2670(02)00148-4

    183. [183]

      Goryacheva, I. Y.; Shtykov, S. N.; Loginov, A. S.; Panteleeva, I. V. Anal. Bioanal. Chem. 2005, 382, 1413.  doi: 10.1007/s00216-005-3287-0

    184. [184]

      Hosseini, S. S. S.; Khezri, S.; Khosravi, A. Appl. Water Sci. 2018, 8, 109.

    185. [185]

      Jia, G.; Bi, C.; Wang, Q.; Qiu, J.; Zhou, W.; Zhou, Z. Anal. Bioanal. Chem. 2006, 384, 1423.  doi: 10.1007/s00216-005-0273-5

    186. [186]

      Ruiz, F. J.; Rubio, S.; Perez-Bendito, D. J. Chromatogr. A 2007, 1163, 269.

    187. [187]

      Moral, A.; Sicilia, M. D.; Rubio, S. J. Chromatogr. A 2009, 1216, 3740.

    188. [188]

      Man, B. K. W.; Lam, M. H. W.; Lam, P. K. S.; Wu, R. S. S.; Shaw, G. Environ. Sci. Technol. 2002, 36, 3985.  doi: 10.1021/es020620v

    189. [189]

      Weschayanwiwat, P.; Krutlert, D.; Scamehorn, J. F. Sep. Sci. Technol. 2009, 44, 2582.  doi: 10.1080/01496390903012130

    190. [190]

      Weschayanwiwat, P.; Kunanupap, O.; Scamehorn, J. F. Chemosphere 2008, 72, 1043.  doi: 10.1016/j.chemosphere.2008.03.065

    191. [191]

      Akama, Y.; Tong, A.-J.; Ito, M.; Tanaka, S. Talanta 1999, 48, 1133.  doi: 10.1016/S0039-9140(98)00331-2

    192. [192]

      Chen, D.; Zhang, P.; Li, Y.; Mei, Z.; Xiao, Y. Anal. Bioanal. Chem. 2014, 406, 6051.  doi: 10.1007/s00216-014-8031-1

    193. [193]

      Wang, Y. L.; Banziger, J.; Dubin, P. L.; Filippelli, G.; Nuraje, N. Environ. Sci. Technol. 2001, 35, 2608.  doi: 10.1021/es001662r

    194. [194]

      Chiappisi, L.; Prévost, S.; Grillo, I.; Gradzielski, M. Langmuir 2014, 30, 1778.

    195. [195]

      Chiappisi, L.; Simon, M.; Gradzielski, M. ACS Appl. Mater. Interfaces 2015, 7, 6139.  doi: 10.1021/am508846r

    196. [196]

      Zhao, W.; Fan, Y.; Wang, H.; Wang, Y. L. Langmuir 2017, 33, 6846.  doi: 10.1021/acs.langmuir.7b01421

    197. [197]

      Zhao, W.; Wang, H.; Wang, Y. L. Soft Matter. 2018, 14, 4178.  doi: 10.1039/C8SM00773J

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    4. [4]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    5. [5]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    6. [6]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    9. [9]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    10. [10]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    11. [11]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    12. [12]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    13. [13]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    14. [14]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    18. [18]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    19. [19]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    20. [20]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

Metrics
  • PDF Downloads(41)
  • Abstract views(2494)
  • HTML views(517)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return