Citation: Zhao Weiwei, Wang Yilin. Development of Surfactant Application in Wastewater Treatment[J]. Acta Chimica Sinica, ;2019, 77(8): 717-728. doi: 10.6023/A19050185 shu

Development of Surfactant Application in Wastewater Treatment

  • Corresponding author: Wang Yilin, yilinwang@iccas.ac.cn
  • Received Date: 17 May 2019
    Available Online: 10 August 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21633002)the National Natural Science Foundation of China 21633002

Figures(7)

  • Water is the most important and essential component for the existing activities of human beings, animals and plants. It is estimated that the total amount of water on the earth is about 1.3 billion tons, but 97% of that is salty ocean water and not suitable for drinking. With the rapid growth of population, industrialization and agricultural modernization and other geological and environmental changes, the water environment is deteriorating continuously. Water pollution and water shortage are two of the most important environmental problems in the world. Consequently, water pollution has become a critical issue in recent years. Pollutants in wastewater include organic, inorganic, biological compounds. As many of them have serious toxicity and even show carcinogenic, the release of considerable amount of wastewater into environment causes damages to human being and aquatic conditions, and further leads to the shortage of water resources. Therefore, the need for wastewater treatment in a low-cost, safe and efficient way and improving the reuse efficiency of water resources have become a must. In recent years, surfactant-based separation techniques have made a great progress in industrial and analytical areas. It offers many advantages including low-energy consumption and environment protection, and has been proved efficient in the separation of many inorganic and organic pollutants. To enhance the application of surfactant-based separation techniques in wastewater treatment, it is very important to have a better understanding of the mechanisms involved in this process. The mechanism and development of surfactant-based wastewater treatment techniques, including micelle-enhanced ultrafiltration (MEUF), surfactant-modified solid phase adsorption and surfactant-based liquid-liquid phase separation are summarized. The effects of the surfactant characteristics, the chemistry of the pollutants and the solution conditions used in experiments on the extract kinetics and efficiencies are discussed. This review aims to provide reference and inspiration for researchers and promote the development of wastewater treatment technologies.
  • 加载中
    1. [1]

      Ali, I. Chem. Rev. 2012, 112, 5073.  doi: 10.1021/cr300133d

    2. [2]

      Clement, R. E.; Yang, P. W. Anal. Chem. 1997, 69, 251R.
       

    3. [3]

      Vandevivere, P. C.; Bianchi, R.; Verstraete, W. J. Chem. Technol. Biotechnol. 1998, 72, 289.

    4. [4]

      Leonard, S. S.; Bower, J. J.; Shi, X. Mol. Cell. Biochem. 2004, 255, 3.
       

    5. [5]

      Samanta, S. K.; Singly, O. V.; Jain, R. K. Trends Biotechnol. 2002, 20, 243.  doi: 10.1016/S0167-7799(02)01943-1

    6. [6]

      Gupta, V. K.; Carrott, P. J. M.; Ribeiro Carrott, M. M. L.; Suhas. Crit. Rew. Env. Sci. Tec. 2009, 39, 783.  doi: 10.1080/10643380801977610

    7. [7]

      Sethi, S.; Wiesner, M. R. J. Environ. Eng. Div. ASCE 1995, 121, 874.

    8. [8]

      Eliassen, R.; Bennet, G. E. J. Water Pollut. Control Fed. 1967, 39, R82.

    9. [9]

      Lee, D. W.; Hong, W. H.; Hwang, K. Y. Sep. Sci. Technol. 2000, 35, 1951.

    10. [10]

      Hempfling, C. Environ. Prog. 1997, 16, 164.  doi: 10.1002/ep.3300160311

    11. [11]

      Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.  doi: 10.1021/cr00017a016

    12. [12]

      Nicolet, L.; Rott, V. Water Sci. Technol. 1999, 40, 191.

    13. [13]

      LaPara, T. M.; Konopka, A.; Nakatsu, C. H.; Alleman, J. E. J. Environ. Eng. ASCE 2000, 126, 739.  doi: 10.1061/(ASCE)0733-9372(2000)126:8(739)

    14. [14]

      Yang, X.; Cai, H.; Bao, M.; Yu, J.; Lu, J.; Li, Y. Chin. J. Chem. 2017, 35, 1549.  doi: 10.1002/cjoc.201700202

    15. [15]

      Huang, X.; Wang, W.; Ling, L.; Zhang, W. Acta Chim. Sinica 2017, 75, 529.
       

    16. [16]

      Zhou, L. Acta Chim. Sinica 2017, 75, 552.
       

    17. [17]

      Tang, J.; Tang, L.; Feng, H.; Dong, H.; Zhang, Y.; Liu, S.; Zeng, G. Acta Chim. Sinica 2017, 75, 575.  doi: 10.7503/cjcu20160676

    18. [18]

      Xia, X.; Hua, Y.; Huang, X.; Ling, L.; Zhang, W. Acta Chim. Sinica 2017, 75, 594.
       

    19. [19]

      Jia, F.; Liu, J.; Zhang, L. Acta Chim. Sinica 2017, 75, 602.  doi: 10.3866/PKU.WHXB201611251
       

    20. [20]

      Zhao, G.; Zhu, B. Principles of Surfactant Action, Chinese Light Industry Press, Beijing, 2003.

    21. [21]

      Fan, Y.; Han, Y.; Wang, Y. L. Acta Phys.-Chim. Sin. 2016, 32, 214.  doi: 10.3866/PKU.WHXB201511022

    22. [22]

      Gibbs, B. F.; Kermasha, S.; Alli, I.; Mulligan, C. N. Int. J. Food Sci. Nutr. 1999, 50, 213.  doi: 10.1080/096374899101256

    23. [23]

      Hinze, W. L.; Pramauro, E. Crit. Rev. Anal. Chem. 1993, 24, 133.

    24. [24]

      Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W. J. Chem. Soc., Faraday Trans. 2 1976, 72, 1525.  doi: 10.1039/f29767201525

    25. [25]

      Ravi Kumar, M. N. V. React. Funct. Polym. 2000, 46, 1.

    26. [26]

      Rosen, M. J. Surfactants and Interfacial Properties, John Wiley & Sons, New York, 1978.

    27. [27]

      Tanford, C. The Hydrophobic Effect:Formation of Micelles and Biological Membranes, Wiley, New York, 1980.

    28. [28]

      Zana, R. Structure-Performance Relationships in Surfactants, Marcel Dekker, New York, 1997.

    29. [29]

      Pastrana-Martínez, L. M.; Morales-Torres, S.; Figueiredo, J. L.; Faria, J. L.; Silva, A. M. T. Water Res. 2015, 77, 179.

    30. [30]

      Syafei, A. D.; Lin, C.-F.; Wu, C.-H. J. Colloid Interf. Sci. 2008, 323, 112.  doi: 10.1016/j.jcis.2008.03.037

    31. [31]

      Secondes, M. F. N.; Naddeo, V.; Belgiorno, V.; Ballesteros-Jr, F. J. Harzard. Mater. 2014, 264, 342.  doi: 10.1016/j.jhazmat.2013.11.039

    32. [32]

      Ren, Y.; Lia, T.; Zhang, W.; Wang, S.; Shi, M.; Shan, C.; Zhang, W.; Guan, X.; Lv, L.; Hua, M.; Pan, B. J. Harzard. Mater. 2019, 365, 312.  doi: 10.1016/j.jhazmat.2018.11.013

    33. [33]

      Choi, Y.-K.; Lee, S.-B.; Lee, D.-J.; Ishigami, Y.; Kajiuchi, T. J. Membr. Sci. 1998, 148, 185.

    34. [34]

      Xu, K.; Zeng, G.-M.; Huang, J.-H.; Wu, J.-Y.; Fang, Y.-Y.; Huang, G.; Li, J.; Xi, B.; Liu, H. Colloids Surf., A 2007, 294, 140.  doi: 10.1016/j.colsurfa.2006.08.017

    35. [35]

      Gzara, L.; Dhahbi, M. Desalination 2001, 137, 241.  doi: 10.1016/S0011-9164(01)00225-9

    36. [36]

      Ahmad, A. L.; Puasa, S. W. Chem. Eng. J. 2007, 132, 257.  doi: 10.1016/j.cej.2007.01.005

    37. [37]

      Bielska, M.; Szymanowski, J. Water Res. 2006, 40, 1027.  doi: 10.1016/j.watres.2005.12.027

    38. [38]

      Talens-Alesson, F. I.; Urbaski, R.; Szymanowski, J. Colloids Surf., A 2001, 178, 71.  doi: 10.1016/S0927-7757(00)00495-7

    39. [39]

      Xiarchos, I.; Jaworska, A.; Zakrzewska-Trznadel, G. J. Membr. Sci. 2008, 321, 222.  doi: 10.1016/j.memsci.2008.04.065

    40. [40]

      Landaburu-Aguirre, J.; Pongracz, E.; Peramaki, P.; Keiski, R. L. J. Hazard. Mater. 2010, 180, 524.  doi: 10.1016/j.jhazmat.2010.04.066

    41. [41]

      Landaburu-Aguirre, J.; García, V.; Pongrácz, E.; Keiski, R. L. Desalination 2009, 240, 262.

    42. [42]

      Son, G.; Lee, S. Korean J. Chem. Eng. 2011, 28, 793.  doi: 10.1007/s11814-010-0427-9

    43. [43]

      Rafique, R. F.; Chowdhury, Z. Z.; Moon, J.; Lee, S. Int. J. Innov. Eng. Technol. 2018, 10, 112.  doi: 10.21817/ijet/2018/v10i1/181001012

    44. [44]

      Channarong, B.; Lee, S. H.; Bade, R.; Shipin, O. V. Desalination 2010, 262, 221.  doi: 10.1016/j.desal.2010.06.016

    45. [45]

      Scamehorn, J. F.; Christian, S. D.; El-Sayed, D. A.; Uchiyama, H.; Younis, S. S. Sep. Sci. Technol. 1994, 29, 809.  doi: 10.1080/01496399408006627

    46. [46]

      Li, X.; He, S.; Feng, C.; Zhu, Y.; Pang, Y.; Hou, J.; Luo, K.; Liao, X. Sustainability 2018, 10, 92.  doi: 10.3390/su10010092

    47. [47]

      Kim, H.; Baek, K.; Kim, B.-K.; Shin, H.-J.; Yang, J.-W. Korean J. Chem. Eng. 2008, 25, 253.  doi: 10.1007/s11814-008-0045-y

    48. [48]

      Schwarze, M.; Gro , M.; Moritz, M.; Buchner, G.; Kapitzki, L.; Chiappisi, L.; Gradzielski, M. J. Membr. Sci. 2015, 478, 140.

    49. [49]

      Yang, H. S.; Han, K. H.; Kang, D. W.; Kim, Y. H. Korean J. Chem. Eng. 1996, 13, 448.  doi: 10.1007/BF02705992

    50. [50]

      Akita, S.; Castillo, L. P.; Nii, S.; Takahashi, K.; Takeuchi, H. J. Membr. Sci. 1999, 162, 111.  doi: 10.1016/S0376-7388(99)00128-3

    51. [51]

      Ferella, F.; Prisciandaro, M.; De Michelis, I.; Veglio, F. Desalination 2007, 207, 125.

    52. [52]

      Huang, J.; Li, H.; Zeng, G.; Shi, L.; Gu, Y.; Shi, Y.; Tang, B.; Li, X. Sep. Purif. Technol. 2018, 207, 199.  doi: 10.1016/j.seppur.2018.06.039

    53. [53]

      Nekoo, A. B.; Khamforoush, M. Iran. Polym. J. 2019, 28, 391.  doi: 10.1007/s13726-019-00708-4

    54. [54]

      Bade, R; Lee, S. H.; Jo, S.; Lee, H.-S.; Lee, S.-E. Desalination 2008, 229, 264.  doi: 10.1016/j.desal.2007.10.015

    55. [55]

      Baek, K.; Yang, J.-W. J. Harzard. Mater. 2004, 108, 119.  doi: 10.1016/j.jhazmat.2004.02.001

    56. [56]

      Abbasi-Garravand, E.; Mulligan, C. N. Sep. Purif. Technol. 2014, 132, 505.  doi: 10.1016/j.seppur.2014.06.010

    57. [57]

      Bahmani, P.; Maleki, A.; Rezaee, R.; Mahvi, A. H.; Khamforoush, M.; Athar, S. D.; Daraei, H.; Gharibi, F.; McKay, G. J. Environ. Health. Sci. Eng. 2019, 17, 115.  doi: 10.1007/s40201-018-00332-z

    58. [58]

      Baek, K.; Kim, B.-K.; Cho, H.-J.; Yang, J.-W. J. Harzard. Mater. 2003, 99, 303.  doi: 10.1016/S0304-3894(03)00063-3

    59. [59]

      Zaghbani, N.; Hafiane, A.; Dhahbi, M. Desalination 2008, 222, 348.

    60. [60]

      Bielska, M.; Prochaska, K. Dyes Pigm. 2007, 74, 410.  doi: 10.1016/j.dyepig.2006.03.001

    61. [61]

      Huang, J.-H.; Zhou, C.-F.; Zeng, G.-M.; Li, X.; Niu, J.; Huang, H.-J.; Shi, L.-J.; He, S.-B. J. Membr. Sci. 2010, 365, 138.

    62. [62]

      Wasan, D. T.; Ginn, M. E.; Shah, D. O. Surfactant Science Series:Surfactants in Chemical/Process, Marcel Dekker, New York, 1998.

    63. [63]

      Purkait, M. K.; DasGupta, S.; De, S. Sep. Purif. Technol. 2004, 37, 81.  doi: 10.1016/j.seppur.2003.08.005

    64. [64]

      Purkait, M. K.; DasGupta, S.; De, S. J. Colloid Interface Sci. 2004, 270, 496.

    65. [65]

      Schwarze, M.; Schaefer, L.; Chiappisi, L.; Gradzielski, M. Sep. Purif. Technol. 2018, 199, 20.  doi: 10.1016/j.seppur.2018.01.043

    66. [66]

      Rubio, S.; Pérez-Bendito, D. TrAC, Trends Anal. Chem. 2003, 22, 470.

    67. [67]

      Yin, C. Y.; Aroua, M. K.; Ashri, W. M.; Daud, W. Sep. Purif. Technol. 2007, 52, 403.  doi: 10.1016/j.seppur.2006.06.009

    68. [68]

      Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanp , M. Chem. Eng. J. 2013, 219, 499.  doi: 10.1016/j.cej.2012.12.038

    69. [69]

      Reeve, P. J.; Fallowfield, H. J. J. Environ. Manage. 2018, 205, 253.  doi: 10.1016/j.jenvman.2017.09.077

    70. [70]

      Jiménez-Castañeda, M. E.; Medina, D. I. Water 2017, 9, 235.  doi: 10.3390/w9040235

    71. [71]

      Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Appl. Clay Sci. 2016, 123, 239.

    72. [72]

      Ahn, C. K.; Park, D.; Woo, S. H.; Park, J. M. J. Hazard. Mater. 2009, 164, 1130.

    73. [73]

      Farooq, W.; Hong, H.-J.; Kim, E. J.; Yang, J.-W. Sep. Sci. Technol. 2012, 47, 1906.

    74. [74]

      Chen, W.-F.; Zhang, Z.-Y.; Li, Q.; Wang, H.-Y. Chem. Eng. J. 2012, 203, 319.  doi: 10.1016/j.cej.2012.07.047

    75. [75]

      Hong, H.-J.; Kim, H.; Baek, K.; Yang, J.-W. Desalination 2008, 223, 221.  doi: 10.1016/j.desal.2007.01.210

    76. [76]

      Monser, L.; Adhoum, N. Sep. Purif. Technol. 2002, 26, 137.  doi: 10.1016/S1383-5866(01)00155-1

    77. [77]

      Mohamed, M. M. J. Colloid Interface Sci. 2004, 272, 28.  doi: 10.1016/j.jcis.2003.08.071

    78. [78]

      Choi, H. D.; Shin, M. C.; Kim, D. H.; Jeon, C. S.; Baek, K. Desalination 2008, 223, 290.  doi: 10.1016/j.desal.2007.01.224

    79. [79]

      Mahmoud, M. E.; Nabil, G. M.; El-Mallah, N. M.; Karar, S. B. Desalin. Water Treat. 2016, 57, 8389.

    80. [80]

      Nabil, G. M.; El-Mallah, N. M.; Mahmoud, M. E. J. Ind. Eng. Chem. 2014, 20, 994.  doi: 10.1016/j.jiec.2013.06.034

    81. [81]

      Dong, Y.; Wu, D.; Chen, X.; Lin, Y. J. Colloid Interface Sci. 2010, 348, 585.  doi: 10.1016/j.jcis.2010.04.074

    82. [82]

      Ghiaci, M.; Kia, R.; Abbaspur, A.; Seyedeyn-Azad, F. Sep. Purif. Technol. 2004, 40, 285.

    83. [83]

      Bowman, R. S. Microporous Mesoporous Mater. 2003, 61, 43.  doi: 10.1016/S1387-1811(03)00354-8

    84. [84]

      Macedo-Miranda, M. G.; Olguín, M. T. J. Inclusion Phenom. Macrocyclic Chem. 2007, 59, 131.  doi: 10.1007/s10847-007-9306-3

    85. [85]

      Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. J. Hazard. Mater. 2009, 162, 204.  doi: 10.1016/j.jhazmat.2008.05.024

    86. [86]

      Widiastuti, N.; Wu, H.; Ang, M.; Zhang, D.-K. Desalination 2008, 218, 271.  doi: 10.1016/j.desal.2007.02.022

    87. [87]

      Naghash, A.; Nezamzadeh-Ejhieh, A. J. Ind. Eng. Chem. 2015, 31, 185.

    88. [88]

      Wingenfelder, U.; Furrer, G.; Schulin, R. Microporous Mesoporous Mater. 2006, 95, 265.

    89. [89]

      Haggerty, G. M.; Bowman, R. S. Environ. Sci. Technol. 1994, 28, 452.

    90. [90]

      Liu, J.; Huang, H.; Huang, R.; Zhang, J. Z.; Hao, S. S.; Shen, Y. Y.; Chen, H. Water Environ. Res. 2016, 88, 490.  doi: 10.2175/106143016X14504669767850

    91. [91]

      Cortés-Martínez, R.; Martínez-Miranda, V.; Solache-Ríos, M.; García-Sosa, I. Sep. Sci. Technol. 2004, 39, 2711.  doi: 10.1081/SS-200026766

    92. [92]

      Torabian, A.; Kazemian, H.; Seifi, L.; Bidhendi, G. N.; Azimi, A. A.; Ghadiri, S. K. Clean:-Soil, Air, Water 2010, 38, 77.  doi: 10.1002/clen.200900157

    93. [93]

      Abatal, M.; Olguin, M. T. Environm. Earth Sci. 2013, 69, 2691.  doi: 10.1007/s12665-012-2091-3

    94. [94]

      Elsheikh, A. F.; Ahmad, U. K.; Ramli, Z. Desalin. Water Treat. 2016, 57, 8302.  doi: 10.1080/19443994.2015.1021846

    95. [95]

      Benkli, Y. E.; Can, M. F.; Turan, M.; Çelik, M. S. Water Res. 2005, 39, 487.

    96. [96]

      Tomašević-Čanović, M.; Daković, A.; Rottinghaus, G.; Matijašević, S.; Đuričić, M. Microporous Mesoporous Mater. 2003, 61, 173.

    97. [97]

      Nikashina, V. A.; Myasoedov, B. F. In Natural Microporous Materials in Environmental Technology, Eds.: Misaelides, P.; Macášek, F.; Pinnavaia, T. J.; Colella, C., Springer Netherlands, Dordrecht, 1999, p. 335.

    98. [98]

      Xie, Q.; Lin, Y.; Wu, D.; Kong, H. Fuel 2017, 203. 411.

    99. [99]

      Shirzadi, H.; Nezamzadeh-Ejhieh, A. J. Mol. Liq. 2017, 230, 221.

    100. [100]

      Trana, H. N.; Vietb, P. V.; Chao, H.-P. Ecotoxicol. Environ. Saf. 2018, 147, 55.

    101. [101]

      Liu, C. M.; Wu, P. X.; Zhu, Y. J.; Tran, L. T. Chemosphere 2016, 144, 1026.  doi: 10.1016/j.chemosphere.2015.09.063

    102. [102]

      Jordan, J. W. J. Phys. Chem. 1949, 53, 294.  doi: 10.1021/j150467a009

    103. [103]

      Smith, J. A.; Galan, A. Environ. Sci. Technol. 1995, 29, 685.  doi: 10.1021/es00003a016

    104. [104]

      Shen, Y. Chemosphere 2001, 44, 989.  doi: 10.1016/S0045-6535(00)00564-6

    105. [105]

      Zhu, L.; Chen, B. Environ. Sci. Technol. 2000, 34, 2997.

    106. [106]

      Zhu, L.; Chen, B.; Shen, X. Environ. Sci. Technol. 2000, 34, 468.

    107. [107]

      Zhu, L.; Li, Y.; Zhang, J. Environ. Sci. Technol. 1997, 31, 1407.

    108. [108]

      Ma, J.; Zhu, L. Chemosphere 2007, 68, 1883.  doi: 10.1016/j.chemosphere.2007.03.002

    109. [109]

      Wu, Z.; Zhu, L. J. Environ. Sci.-China 2012, 24, 248.  doi: 10.1016/S1001-0742(11)60780-8

    110. [110]

      Nourmoradi, H.; Khiadani, M.; Nikaeen, M. J. Chem. 2013, 2013, 1.

    111. [111]

      Chen, D. M.; Chen, J.; Luan, X. L.; Ji, H. P.; Xia, Z. G. Chem. Eng. J. 2011, 171, 1150.

    112. [112]

      Chen, D. M.; Chen, J.; Wang, X. M.; Luan, X. L.; Ji, H. P.; Xu, F. Adv. Mater. Res. 2011, 178, 29.

    113. [113]

      Wang, L.; Wang, A. J. Hazard. Mater. 2008, 160, 173.  doi: 10.1016/j.jhazmat.2008.02.104

    114. [114]

      Acisli, O.; Khataee, A.; Karaca, S.; Sheydaei, M. Ultrason. Sonochem. 2016, 31, 116.

    115. [115]

      Lin, S.-H.; Juang, R.-S. J. Hazard. Mater. 2002, 92, 315.  doi: 10.1016/S0304-3894(02)00026-2

    116. [116]

      Malakul, P.; Srinivasan, K. R.; Wang, H. Y. Ind. Eng. Chem. Res. 1998, 37, 4296.  doi: 10.1021/ie980057i

    117. [117]

      Li, S.-Z.; Wu, P.-X. J. Hazard. Mater. 2010, 173, 62.  doi: 10.1016/j.jhazmat.2009.08.047

    118. [118]

      Özcan, A. S.; Gök, Ö.; Özcan, A. J. Hazard. Mater. 2009, 161, 499.  doi: 10.1016/j.jhazmat.2008.04.002

    119. [119]

      Zhu, R.; Zhu, L.; Zhu, J. Environ. Sci. 2006, 27, 91.

    120. [120]

      Ma, J.; Zhu, L. J. Harzard. Mater. 2006, 136, 982.  doi: 10.1016/j.jhazmat.2006.01.046

    121. [121]

      Bungenberg de Jong, H. G. Colloid Science, Elsevier, Amsterdam, 1949.

    122. [122]

      Bohidar, H. B. J. Surface Sci. Technol. 2008, 24, 105.

    123. [123]

      Veis, A. Adv. Colloid Interface Sci. 2011, 167, 2.  doi: 10.1016/j.cis.2011.01.007

    124. [124]

      Kizilay, E.; Kayitmazer, A. B.; Dubin, P. L. Adv. Colloid Interface Sci. 2011, 167, 24.  doi: 10.1016/j.cis.2011.06.006

    125. [125]

      Michaeli, I.; Overbeek, J. T. G.; Voorn, M. J. J. Polym. Sci. 1957, 23, 443.

    126. [126]

      Sato, H.; Nakajima, A. Colloid. Polym. Sci. 1974, 252, 944.  doi: 10.1007/BF01566615

    127. [127]

      Wang, M.; Wang, Y. L. Soft Matter 2014, 10, 7909.  doi: 10.1039/C4SM01386G

    128. [128]

      Zhao, W.; Wang, Y. L. Adv. Colloid Interface Sci. 2017, 239, 199.  doi: 10.1016/j.cis.2016.04.005

    129. [129]

      Ruan, K.; Xiao, J.; Zhang, L.; Zhao, Z.; Zhang, Y. Acta Chim. Sinica 2002, 60, 961.
       

    130. [130]

      Corti, M.; Degiorgio, V. Phys. Rev. Lett. 1985, 55, 2005.

    131. [131]

      Lindman, B.; Carlsson, A.; Karlström, G.; Malmsten, M. Adv. Colloid Interface Sci. 1990, 32, 183.  doi: 10.1016/0001-8686(90)80018-U

    132. [132]

      Cohen, I.; Economou, P. J. Phys. Chem. 1964, 68, 2801.  doi: 10.1021/j100792a010

    133. [133]

      Cohen, I.; Economou, P. J. Am. Oil Chem. Soc. 1964, 41, 461.  doi: 10.1007/BF02670022

    134. [134]

      Cohen, I.; Economou, P.; Libackyj, A. J. Phys. Chem. 1962, 66, 1829.  doi: 10.1021/j100816a013

    135. [135]

      Cohen, I.; Hiskey, C. F.; Oster, G. J. Colloid Sci. 1954, 9, 243.  doi: 10.1016/0095-8522(54)90019-7

    136. [136]

      Cohen, I.; Vassiliades, T. J. Phys. Chem. 1961, 65, 1774.  doi: 10.1021/j100827a021

    137. [137]

      Cohen, I.; Vassiliades, T. J. Am. Oil Chem. Soc. 1962, 39, 246.  doi: 10.1007/BF02631703

    138. [138]

      Wang, M.; Fan, Y.; Han, Y.; Nie, Z.; Wang, Y. L. Langmuir 2013, 29, 14839.  doi: 10.1021/la403582y

    139. [139]

      Hoffmann, H.; Thunig, C.; Munkert, U.; Meyer, H. W.; Richter, W. Langmuir 1992, 8, 2629.

    140. [140]

      Horbaschek, K.; Hoffmann, H.; Thunig, C. J. Colloid Interface Sci. 1998, 206, 439.  doi: 10.1006/jcis.1998.5690

    141. [141]

      Casero, I.; Sicilia, D.; Rubio, S.; Pérez-Bendito, D. Anal. Chem. 1999, 71, 4519.  doi: 10.1021/ac990106g

    142. [142]

      Paleologos, E. K.; Giannakopoulos, S. S.; Zygoura, P. D.; Kontominas, M. G. J. Agric. Food Chem. 2006, 54, 5236.  doi: 10.1021/jf060273z

    143. [143]

      Li, Y.; Dubin, P. L.; Havel, H. A.; Edwards, S. L.; Dautzenberg, H. Langmuir 1995, 11, 2486.  doi: 10.1021/la00007a029

    144. [144]

      Wang, Y. L.; Kimura, K.; Dubin, P. L.; Jaeger, W. Macromolecules 2000, 33, 3324.

    145. [145]

      Wang, Y. L.; Kimura, K.; Huang, Q.; Dubin, P. L.; Jaeger, W. Macromolecules 1999, 32, 7128.

    146. [146]

      Dubin, P. L.; Li, Y.; Jaeger, W. Langmuir 2008, 24, 4544.

    147. [147]

      Löf, D.; Niemiec, A.; Schillén, K.; Loh, W.; Olofsson, G. J. Phys. Chem. B 2007, 111, 5911.  doi: 10.1021/jp071101n

    148. [148]

      Carlsson, A.; Karlströem, G.; Lindman, B. Langmuir 1986, 2, 536.  doi: 10.1021/la00070a027

    149. [149]

      Hashidzume, A.; Ohara, T.; Morishima, Y. Langmuir 2002, 18, 9211.  doi: 10.1021/la020493g

    150. [150]

      Thalberg, K.; Lindman, B.; Bergfeldt, K. Langmuir 1991, 7, 2893.  doi: 10.1021/la00060a005

    151. [151]

      Thalberg, K.; Lindman, B.; Karlströem, G. J. Phys. Chem. 1991, 95, 3370.

    152. [152]

      Watanabe, H.; Tanaka, H. Talanta 1978, 25, 585.  doi: 10.1016/0039-9140(78)80151-9

    153. [153]

      Bordier, C. J. Biol. Chem. 1981, 256, 1604.

    154. [154]

      Ballesteros-Gómez, A.; Sicilia, M. D.; Rubio, S. Anal. Chim. Acta 2010, 677, 108.  doi: 10.1016/j.aca.2010.07.027

    155. [155]

      Trakultamupatam, P.; Scamehorn, J. F.; Osuwan, S. Sep. Sci. Technol. 2002, 37, 1291.

    156. [156]

      Kungsanant, S.; Kittisrisawai, S.; Suriya-Amrit, P.; Kitiyanan, B.; Chavadej, S.; Osuwan, S.; Scamehorn, J. F. Sep. Sci. Technol. 2018, 53, 2662.

    157. [157]

      Pino, V.; Ayala, J. H.; Afonso, A. M.; González, V. J. Chromatogr. A 2002, 949, 291.  doi: 10.1016/S0021-9673(01)01589-8

    158. [158]

      Song, G. Q.; Lu, C.; Hayakawa, K.; Lin, J.-M. Anal. Bioanal. Chem. 2006, 384, 1007.

    159. [159]

      Taechangam, P.; Scamehorn, J. F.; Osuwan, S.; Rirksomboon, T. Colloids Surf., A 2009, 347, 200.  doi: 10.1016/j.colsurfa.2009.04.005

    160. [160]

      Mahugo Santana, C.; Sosa Ferrera, Z.; Santana Rodriguez, J. J. Analyst 2002, 127, 1031.

    161. [161]

      Haddou, B.; Canselier, J. P.; Gourdon, C. Sep. Purif. Technol. 2006, 50, 114.

    162. [162]

      Ghouas, H.; Haddou, B.; Kameche, M.; Canselier, J. P.; Gourdon, C. J. Surfactants Deterg. 2016, 19, 57.  doi: 10.1007/s11743-015-1764-9

    163. [163]

      Pourreza, N.; Rastegarzadeh, S.; Larki, A. Talanta 2008, 77, 733.  doi: 10.1016/j.talanta.2008.07.031

    164. [164]

      Liu, W.; Zhao, W.; Chen, J.; Yang, M. Anal. Chim. Acta 2007, 605, 41.  doi: 10.1016/j.aca.2007.10.034

    165. [165]

      Appusamy, A.; John, I.; Ponnusamy, K.; Ramalingam, A. Eng. Sci. Technol. Int. J. 2014, 17, 137.  doi: 10.1016/j.jestch.2014.04.008

    166. [166]

      Zhou, J.; Chen, J.; Cheng, Y.; Li, D.; Hu, F.; Li, H. Talanta 2009, 79, 189.

    167. [167]

      Lee, C.-K.; Su, W.-D. Sep. Sci. Technol. 1999, 34, 3267.

    168. [168]

      Andreia Mesquita da Silva, M.; Lúcia Azzolin Frescura, V.; José Curtius, A. Spectrochim. Acta, Part B 2001, 56, 1941.  doi: 10.1016/S0584-8547(01)00323-8

    169. [169]

      Chen, J.; Teo, K. C. Anal. Chim. Acta 2001, 450, 215.  doi: 10.1016/S0003-2670(01)01367-8

    170. [170]

      Chen, J.; Teo, K. C. Anal. Chim. Acta 2001, 434, 325.  doi: 10.1016/S0003-2670(01)00849-2

    171. [171]

      Lázaro Gallindo Borges, D.; Mesquita Silva da Veiga, M. A.; Azzolin Frescura, V. L.; Welz, B.; Curtius, A. J. J. Anal. At. Spectrom. 2003, 18, 501.  doi: 10.1039/b209680c

    172. [172]

      Manzoori, J. L.; Bavili-Tabrizi, A. Anal. Chim. Acta 2002, 470, 215.  doi: 10.1016/S0003-2670(02)00765-1

    173. [173]

      Manzoori, J. L.; Karim-Nezhad, G. Anal. Chim. Acta 2003, 484, 155.  doi: 10.1016/S0003-2670(03)00343-X

    174. [174]

      Manzoori, J. L.; Karim-Nezhad, G. Anal. Sci. 2003, 19, 579.  doi: 10.2116/analsci.19.579

    175. [175]

      Teo, K. C.; Chen, J. Analyst 2001, 126, 534.

    176. [176]

      Satti, A. A.; Durukan Temuge, İ.; Bektas, S.; Arpa Şahin, . Turk. J. Chem. 2016, 40, 979.

    177. [177]

      Trakultamupatam, P.; Scamehorn, J. F.; Osuwan, S. Sep. Sci. Technol. 2002, 37, 1291.  doi: 10.1081/SS-120002612

    178. [178]

      Pourreza, N.; Zareian, M. J. Hazard. Mater. 2009, 165, 1124.  doi: 10.1016/j.jhazmat.2008.10.132

    179. [179]

      de Wuilloud, J. C. A.; Wuilloud, R. G.; Sadi, B. B. M.; Caruso, J. A. Analyst 2003, 128, 453.  doi: 10.1039/b300862m

    180. [180]

      Kukusamude, C.; Santalad, A.; Boonchiangma, S.; Burakham, R.; Srijaranai, S.; Chailapakul, O. Talanta 2010, 81, 486.  doi: 10.1016/j.talanta.2009.12.029

    181. [181]

      Zarei, A. R. Anal. Biochem. 2007, 369, 161.  doi: 10.1016/j.ab.2007.06.039

    182. [182]

      Sicilia, D.; Rubio, S.; Pérez-Bendito, D. Anal. Chim. Acta 2002, 460, 13.  doi: 10.1016/S0003-2670(02)00148-4

    183. [183]

      Goryacheva, I. Y.; Shtykov, S. N.; Loginov, A. S.; Panteleeva, I. V. Anal. Bioanal. Chem. 2005, 382, 1413.  doi: 10.1007/s00216-005-3287-0

    184. [184]

      Hosseini, S. S. S.; Khezri, S.; Khosravi, A. Appl. Water Sci. 2018, 8, 109.

    185. [185]

      Jia, G.; Bi, C.; Wang, Q.; Qiu, J.; Zhou, W.; Zhou, Z. Anal. Bioanal. Chem. 2006, 384, 1423.  doi: 10.1007/s00216-005-0273-5

    186. [186]

      Ruiz, F. J.; Rubio, S.; Perez-Bendito, D. J. Chromatogr. A 2007, 1163, 269.

    187. [187]

      Moral, A.; Sicilia, M. D.; Rubio, S. J. Chromatogr. A 2009, 1216, 3740.

    188. [188]

      Man, B. K. W.; Lam, M. H. W.; Lam, P. K. S.; Wu, R. S. S.; Shaw, G. Environ. Sci. Technol. 2002, 36, 3985.  doi: 10.1021/es020620v

    189. [189]

      Weschayanwiwat, P.; Krutlert, D.; Scamehorn, J. F. Sep. Sci. Technol. 2009, 44, 2582.  doi: 10.1080/01496390903012130

    190. [190]

      Weschayanwiwat, P.; Kunanupap, O.; Scamehorn, J. F. Chemosphere 2008, 72, 1043.  doi: 10.1016/j.chemosphere.2008.03.065

    191. [191]

      Akama, Y.; Tong, A.-J.; Ito, M.; Tanaka, S. Talanta 1999, 48, 1133.  doi: 10.1016/S0039-9140(98)00331-2

    192. [192]

      Chen, D.; Zhang, P.; Li, Y.; Mei, Z.; Xiao, Y. Anal. Bioanal. Chem. 2014, 406, 6051.  doi: 10.1007/s00216-014-8031-1

    193. [193]

      Wang, Y. L.; Banziger, J.; Dubin, P. L.; Filippelli, G.; Nuraje, N. Environ. Sci. Technol. 2001, 35, 2608.  doi: 10.1021/es001662r

    194. [194]

      Chiappisi, L.; Prévost, S.; Grillo, I.; Gradzielski, M. Langmuir 2014, 30, 1778.

    195. [195]

      Chiappisi, L.; Simon, M.; Gradzielski, M. ACS Appl. Mater. Interfaces 2015, 7, 6139.  doi: 10.1021/am508846r

    196. [196]

      Zhao, W.; Fan, Y.; Wang, H.; Wang, Y. L. Langmuir 2017, 33, 6846.  doi: 10.1021/acs.langmuir.7b01421

    197. [197]

      Zhao, W.; Wang, H.; Wang, Y. L. Soft Matter. 2018, 14, 4178.  doi: 10.1039/C8SM00773J

  • 加载中
    1. [1]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    12. [12]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    16. [16]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    17. [17]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    20. [20]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

Metrics
  • PDF Downloads(39)
  • Abstract views(2370)
  • HTML views(466)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return