Citation: Dai Jianling, Lei Wenlong, Liu Qiang. Visible-Light-Driven Difluoroalkylation of Aromatics Catalyzed by Copper[J]. Acta Chimica Sinica, ;2019, 77(9): 911-915. doi: 10.6023/A19050181 shu

Visible-Light-Driven Difluoroalkylation of Aromatics Catalyzed by Copper

  • Corresponding author: Liu Qiang, liuqiang@lzu.edu.cn
  • Received Date: 15 May 2019
    Available Online: 14 September 2019

    Fund Project: the National Natural Science Foundation of China 21572090the National Natural Science Foundation of China 21871123Project supported by the National Natural Science Foundation of China (Nos. 21572090 and 21871123) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-k05)the Fundamental Research Funds for the Central Universities lzujbky-2017-k05

Figures(2)

  • The introduction of difluoromethyl groups into organic molecules not only can dramatically alter physical properties of nonfluorinated counterparts, but also provide valuable CF2-containing building blocks for the synthesis of other difluoromethylenated compounds. Therefore, there is a growing demand to develop efficient and practical methods for the introduction of the difluoromethyl motif. Although significant advances have been made in the preparation of difluoromethylated arenes, these reactions usually required pre-functionalized substrates, precious metal catalysts, elevated temperature, and so on. In the past decade, visible light-driven photoredox catalysis has been proved to be powerful in synthetic radical chemistry. Particularly, direct difluoroalkylations of arenes have been achieved using precious-metal photocatalysts such as ruthenium or iridium polypyridyl complexes. Herein, we are committed to developing a cheap copper-based phororedox system for direct difluoroalkylation of arenes. The key to this approach is the in-situ formation of cuprous photocatalyst from cuprous iodide, an imine ligand (2, 9-dichloro-1, 10-phenanthroline) and a triaryl phosphine ligand (4, 5-bis(diphenylphos-phino)-9, 9-dimethyl xanthene). With catalytic amount of reagents mentioned above, the direct difluoroalkylation between arenes and difluoroalkylation reagents (BrCF2CO2Et or BrCF2CONR1R2) took place smoothly under 6 W blue LED irradiation at room temperature. A variety of electron-rich arenes, including electron-donating aromatics, indoles, furans, thiophenes, and pyrimidines, could be carbonyldifluoromethylated in moderate to excellent yields. In addition, high yields were obtained for the intramolecular and intermolecular aminocarbonyldifluoromethylation by the catalytic system. Preliminary mechanistic studies reveal that[Cu(dcp)(xantphos)]Ⅰ (dcp=2, 9-dichloro-1, 10-phenanthroline, xantphos=4, 5-bis(diphenyl phosphino)-9, 9-dimethyl xanthene), in situ-formed from CuI, dcp, and xantphos should be the real photocatalyst to catalyze the visible light-driven difluoroalkylation. Difluormethyl radicals, produced by single electron transfer from the excited photocatalyst to difluoroalkylation reagents, should be involved in the difluoroalkylation. In summary, visible-light driven difluoroalkylation of arenes with difluoroalkylation reagents via Cu-catalysis has been developed. The use of the bidentate phosphine ligand and the imine ligand is essential for high efficiency as they could bind to cuprous iodide to generate the photocatalyst in situ. The typical procedure is as follows:a mixture of arenes (0.6 mmol), CuI (0.02 mmol), dcp (0.02 mmol), xantphos (0.02 mmol), K3PO4(0.4 mmol) and CH2Cl2 (2 mL) were loaded in a flame-dried reaction vial which was subjected to evacuation with argon for 30 min. Subsequently, BrCF2CO2Et (0.2 mmol) was added to the mixture via syringe, and the mixture continued degassing for 5 min. After degassing procedure, the vial was sealed with wax, and irradiated by blue light for 24 h. The reaction was monitored by TLC. Further purification of the evaporated mixture by flash column chromatography on silica gel (eluent:petroleum ether/ethyl acetate) gave the desired product.
  • 加载中
    1. [1]

      (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320.

    2. [2]

      (a) Jeschke, P. ChemBioChem 2004, 5, 570. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) Wang, J.; Sanchez-Rosello, M.; del Pozo, C.; Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev. 2014, 114, 2432.

    3. [3]

      (a) Bégué, J. P.; Bonnet-Delpon, D. J. Fluorine Chem. 2006, 127, 992. (b) Isanbor, C. J. Fluorine Chem. 2006, 127, 303. (c) Kirk, K. L. J. Fluorine Chem. 2006, 127, 1013.

    4. [4]

      Wong, D. T.; Bymaster, F. P.; Engleman, E. A. Life Sci. 1995, 57, 411.  doi: 10.1016/0024-3205(95)00209-O

    5. [5]

      Roth, B. D. In Progress in Medicinal Chemistry, Vol. 40, Eds.: King, F. D.; Oxford, A. W., Elsevier, Amsterdam, 2002, pp. 1~22.

    6. [6]

      Drlica, K.; Malik, M. Curr. Top. Med. Chem. 2003, 3, 249.  doi: 10.2174/1568026033452537

    7. [7]

      (a) Purser, S.; Moore, P.-R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (b) Nenajdenko, V. G.; Shastin, A. V. Chem. Rev. 2015, 115, 973. (c) Ni, C.-F.; Hu, J.-B. Chem. Rev. 2015, 115, 765. (d) Liang, T.; Ritter, T. Angew. Chem., Int. Ed. 2013, 52, 8214. (e) Zhou, B.-Y.; Cheng, J.-P. Org. Lett. 2016, 18, 6128. (f) Yu, W.; Qing, F.-L. Org. Lett. 2016, 18, 5130. (g) Guo, W.-H.; Zhang, X. ACS Catal. 2017, 7, 896. (h) Fu, X.-P.; Xiao, Y.-L.; Zhang, X. Chin. J. Chem. 2018, 36, 143. (i) He, X.; Gao, X.; Zhang, X. Chin. J. Chem. 2018, 36, 1059. (j) Fujiwara, Y. J.; Dixon, A.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494. (k) Xu, L.; Vicic, D. A. J. Am. Chem. Soc. 2016, 138, 2536. (l) Qi, Q.-Q.; Shen, Q.-L.; Lu, L. J. Am. Chem. Soc. 2012, 134, 6548. (m) Feng, Z.; Zhang, X. Org. Lett. 2016, 18, 44. (n) Ruan, Z.-X.; Zhang, S.-K.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 56, 2045.

    8. [8]

    9. [9]

      (a) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529. (b) Meanwell, N. A. J. Med. Chem. 2018, 61, 5822.

    10. [10]

    11. [11]

      Shi, S.-L.; Buchwald, S.-L. Angew. Chem. Int. Ed. 2017, 129, 2077.  doi: 10.1002/ange.201611595

    12. [12]

      (a) Belhomme, M.-C.; Poisson, T.; Pannecoucke, X. J. Org. Chem. 2014, 79, 7205; (b) Wang, L.-P.; Liu, H.-Y.; Li, F.-F.; Zhao, J.-Q.; Zhang, H.-Y.; Zhang, Y.-C. Adv. Synth. Catal. 2019, 361, 2354.

    13. [13]

      (a) Ruan, Z.-X.; Zhang, S.-K.; Zhu, C.-J.; Ruth, P.-N.; Stalke, D.; Ackermann, L. Angew. Chem., Int. Ed. 2017, 129, 2077; (b) Li, Z.-Y.; Li, L.; Li, Q.-L.; Jing, K.; Xu, H.; Wang, G.-W. Chem. Eur. J., 2017, 23, 3285. (c) Yuan, C.-C.; Chen, X.-L.; Zhang, J.-Y.; Zhao, Y.-S. Org. Chem. Front. 2017, 4, 1867.

    14. [14]

      (a) Chen, Y.-Y.; Lu, L.-Q.; Yu, D.-G.; Zhu, C.-J.; Xiao, W.-J. Sci China Chem. 2019, 62, 24. (b) Liu, Q.; Wu, L.-Z. Nat. Sci. Rev. 2017, 4, 359. (d) Skubi, K. L.; Yoon, T. P. Nature 2014, 515, 45.

    15. [15]

      (a) Lin, Q.; Chu, L.; Qing, F. Chin. J. Chem. 2013, 31, 885. (b) Yu, X.; Xu, X.-H.; Qing, F. Org. Lett. 2016, 18, 5130. (c) Su, Y.-M.; Hou, Y.; Yin, F.; Xu, Y.-M.; Li, Y.; Zheng, X.; Wang, X. Org. Lett. 2014, 16, 2958. (d) Jung, J.; Kim, E.; You, Y.; Cho, E. J. Adv. Synth. Catal. 2014, 356, 2741. (e) McAtee, R.-C.; Beatty, J.-W.; McAtee, C.-C.; Stephenson, C. R. J. Org. Lett. 2018, 20, 3491. (f) Wang, L.; Wei, X.-J.; Lei, W.-L.; Chen, H.; Wu, L.-Z.; Liu, Q. Chem. Commun. 2014, 50, 15916. (g) Wang, L.; Wei, X.-J.; Jia, W.-L.; Zhong, J.-J.; Wu, L.-Z.; Liu, Q. Org. Lett. 2014, 16, 5842.

    16. [16]

      (a) Paria, S.; Reiser, O. ChemCatChem 2014, 6, 2477. (b) Reiser, O. Acc. Chem. Res. 2016, 49, 1990. (c) Hernandez-Perez, A. C.; Collins, S. K. Acc. Chem. Res. 2016, 49, 1557. (d) Cuttell, D. G.; Kuang, S.-M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. J. Am. Chem. Soc. 2002, 124, 6. (e) McMillin, D. R.; McNett, K. M. Chem. Rev. 1998, 98, 1201. (f) Cuttell, D. G.; Kuang, S.-M.; Fanwick, P. E.; McMillin, D. R.; Walton, R. A. J. Am. Chem. Soc. 2002, 124, 6.

    17. [17]

      (a) Huang, J.; Mara, M. W.; Stickrath, A. B.; Kokhan, O.; Harpham, M. R.; Haldrup, K.; Shelby, M. L.; Zhang, X.; Ruppert, R.; Sauvage, J.-P.; Chen, L. X. Dalton Trans. 2014, 43, 17615. (b) Pirtsch, M.; Paria, S.; Matsuno, T.; Isobe, H. T.; Reiser, O. Chem. Eur. J. 2012, 18, 7336. (c) Paria, S.; Pirtsch, M.; Kais, V.; Reiser, O. Synthesis 2013, 45, 2689. (d) Tang, X.-J.; Dolbier, W. R., Jr. Angew. Chem., Int. Ed. 2015, 54, 4246. (e) Bagal, D. B.; Kachkovskyi, G.; Knorn, M.; Rawner, T.; Bhanage, B. M.; Reiser, O. Angew. Chem., Int. Ed. 2015, 54, 6999. (f) Fumagalli, G.; Rabet, P. T. G.; Boyd, S.; Greaney, M. F. Angew. Chem., Int. Ed. 2015, 54, 11481. (g) Rabet, P. T. G.; Fumagalli, G.; Boyd, S.; Greaney, M. F. Org. Lett. 2016, 18, 1646. (h) Hossain, A.; Engl, S.; Lutsker, E.; Reiser, O. ACS Catal. 2019, 9, 1103.

    18. [18]

      (a) Hernandez-Perez, A. C.; Vlassova, A.; Collins, S. K. Org. Lett. 2012, 14, 2988. (b) Knorn, M.; Rawner, T.; Czerwieniec, R.; Reiser, O. ACS Catal. 2015, 5, 5186. (c) Murat, A.-Z.; Hu, X.-L. Organometallics 2018, 37, 3928. (d) Brunner, F.; Graber, S.; Baumgartner, Y.; Haussinger, D.; Prescimone, A.; Constable, E. C.; Housecroft, C. E. Dalton Trans. 2017, 46, 6379. (e) Nitelet, N.; Thevenet, D.; Schiavi, B.; Hardouin, C.; Fournier, J.; Tamion, R.; Pannecoucke, X.; Jubault, P.; Poisson, T. Chem. Eur. J. 2019, 25, 3262. (f) Wang, B.; Shelar, D. P.; Han, X.-Z.; Li, T.-T.; Guan, X.-G. Chem. Eur. J. 2015, 21, 1184. (g) Michelet, B.; Deldaele, C.; Kajouj, S.; Moucheron, C.; Evano, G. Org. Lett. 2017, 19, 3576. (h) Lu, W.; Liu, K.; Chen, Y.; Fu, W.-F.; Che, C.-M. Chem. Eur. J. 2015, 21, 1184.

    19. [19]

      (a) Hernandez-Perez, A. C.; Collins, S. K. Angew. Chem. Int. Ed. 2013, 52, 12696. (b) Hernandez-Perez, A. C.; Collins, S. K. Angew. Chem. Int. Ed. 2013, 125, 12928. (c) Hernandez-Perez, A. C.; Vlassova, A.; Collins, S. K. Org. Lett. 2012, 14, 2988.

    20. [20]

      (a) Ahn, J. M.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 18101. (b) Zhao, W.; Wurz, R. P.; Peters, J. C.; Fu, G. C. J. Am. Chem. Soc. 2017, 139, 12153.

    21. [21]

      Wang, W.; Guo, M.-Z.; Qi, R.-P.; Shang, Q.-Y.; Liu, Q.; Wang, S.; Zhao, L.; Wang, R.; Xu, Z.-Q. Angew. Chem. Int. Ed. 2018, 57, 15841.  doi: 10.1002/anie.201809400

    22. [22]

      Zhang, B.; Daniliuc, C. G.; Studer, A. Angew. Chem., Int. Ed. 2013, 52, 10792  doi: 10.1002/anie.201306082

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    4. [4]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    5. [5]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    6. [6]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    7. [7]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    19. [19]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(12)
  • Abstract views(1145)
  • HTML views(247)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return