Citation: Chen Yilin, Chang Liang, Zuo Zhiwei. Visible Light Photoredox-Induced Smiles Rearrangement[J]. Acta Chimica Sinica, ;2019, 77(9): 794-802. doi: 10.6023/A19050179 shu

Visible Light Photoredox-Induced Smiles Rearrangement

  • Corresponding author: Zuo Zhiwei, zuozhw@shanghaitech.edu.cn
  • Received Date: 14 May 2019
    Available Online: 4 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (No. 21772121) and the "Thousand Plan" Youth programthe National Natural Science Foundation of China 21772121

Figures(20)

  • The intramolecular aromatic ring systems migration reactions, namely Smiles rearrangement is a powerful method for (hetero)aryl group functionalization. It can be employed as a complementary strategy to arene functionalization, and has found its broad applications in synthetic chemistry. After the initial documentation in 1894 this chemistry was intensively investigated by Smiles. In its classical pathway, the migration of aromatic ring system takes place ipso nucleophilic substitution. Accordingly, the migrating (hetero)aryl groups are highly electronic and steric-dependent. Moreover, as new reaction modes reported, advances have been made in the areas for arene C-C, C-N and C-O bond formation and radical triggered Smiles rearrangement has also enriched migrating units. Recently, there has been a rapid growth in the transformation induced by visible-light photocatalysis. Harnessing visible light as the energy source for chemical reactions usually serves as an environmentally benign alternative in comparison with classical radical pathway. Furthermore, photoredox-induced rearrangement represents a valuable and efficient approach for facilitating both the radical-based bond-cleaving and bond-forming events in a single step. It has become an effective tool for both synthesis and late stage modification of bio-active molecules. The last five years has witnessed many important advances in exploring photo-induced Smiles reactions, which make this classic reaction regained its attention. Significant progress has been made for expediting the generation of N-centered, C-centered and O-centered from a variety of precursors before single electron transfer rearrangement. This powerful synthetic platform for efficient promotes (hetero) aromatic group construction under mild reaction conditions, and has become a useful method for the synthesis and late stage functionalization of pharmaceutically interest products. In this perspective, we focus on visible light induced Smiles chemistry, which the major breakthroughs are classified based on migrating-induced radical species, and their synthetic applications are discussed briefly.
  • 加载中
    1. [1]

    2. [2]

      (a) Warren, L. A.; Smiles, S. J. Chem. Soc. 1930, 1327; (b) Warren, L. A.; Smiles, S. J. Chem. Soc. 1930, 956; (c) Levi, A.; Warren, L. A.; Smiles, S. J. Chem. Soc. 1933, 1490.

    3. [3]

      (a) Kong, W.; Merino, E.; Nevado, C. Angew. Chem., Int. Ed. 2014, 53, 5078; (b) Thaharn, W.; Soorukram, D.; Kuhakarn, C.; Tuchinda, P.; Reutrakul, V.; Pohmakotr, M. Angew. Chem., Int. Ed. 2014, 53, 2212; (c) Fuentes, N.; Kong, W.; Fernández-Sánchez, L.; Merino, E.; Nevado, C. J. Am. Chem. Soc. 2015, 137, 964; (d) Wu, X.; Zhu, C. Chin. J. Chem. 2019, 37, 171.

    4. [4]

      Douglas, J. J.; Albright, H.; Sevrin, M. J.; Cole, K. P.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2015, 54, 14898.  doi: 10.1002/anie.201507369

    5. [5]

      Benito Collado, A. B.; Diaz Buezo, N.; Jimenez-Aguado, A. M.; Lafuente Blanco, C.; Martinez-Grau, M. A.; Pedregal-Tercero, C.; Toledo Escribano, M. A. U.S. 8232289 B2, 2011.

    6. [6]

      Douglas, J. J.; Sevrin, M. J.; Cole, K. P.; Stephenson, C. R. J. Org. Process Res. Dev. 2016, 20, 1148.  doi: 10.1021/acs.oprd.6b00126

    7. [7]

      Li, Y.; Hu, B.; Dong, W.; Xie, X.; Wan, J.; Zhang, Z. J. Org. Chem. 2016, 81, 7036.  doi: 10.1021/acs.joc.6b00735

    8. [8]

      Alpers, D.; Cole, K. P.; Stephenson, C. R. J. Angew. Chem., Int. Ed. 2018, 57, 12167.  doi: 10.1002/anie.201806659

    9. [9]

      Faderl, C.; Budde, S.; Kachkovskyi, G.; Rackl, D.; Reiser, O. J. Org. Chem. 2018, 83, 12192.  doi: 10.1021/acs.joc.8b01538

    10. [10]

      Liu, C.; Zhang, B. RSC Adv. 2015, 5, 61199.  doi: 10.1039/C5RA08996D

    11. [11]

      Brachet, E.; Marzo, L.; Selkti, M.; König, B.; Belmont, P. Chem. Sci. 2016, 7, 5002.  doi: 10.1039/C6SC01095D

    12. [12]

      Tang, S.; Yuan, L.; Deng, Y.-L.; Li, Z.-Z.; Wang, L.-N.; Huang, G.-X.; Sheng, R.-L. Tetrahedron Lett. 2017, 58, 329.  doi: 10.1016/j.tetlet.2016.12.027

    13. [13]

      Huang, H.; Li, Y. J. Org. Chem. 2017, 82, 4449.  doi: 10.1021/acs.joc.7b00350

    14. [14]

      Monos, T. M.; McAtee, R. C.; Stephenson, C. R. J. Science 2018, 361, 1369.

    15. [15]

      Zard, S. Z. Chem. Soc. Rev. 2008, 37, 1603.  doi: 10.1039/b613443m

    16. [16]

      Yu, J.; Wu, Z.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 17156.  doi: 10.1002/anie.201811346

    17. [17]

      Whalley, D. M.; Duong, H. A.; Greaney, M. F. Chem. Eur. J. 2019, 25, 1927.  doi: 10.1002/chem.201805712

    18. [18]

      Xu, P.; Hu, K.; Gu, Z.; Cheng, Y.; Zhu, C. Chem. Commun. 2015, 51, 7222.  doi: 10.1039/C5CC01189B

    19. [19]

      (a) Huang, H.-L.; Yan, H.; Yang, C.; Xia, W. Chem. Commun. 2015, 51, 4910; (b) Li, Y.; Liu, B.; Ouyang, X.-H.; Song, R.-J.; Li, J.-H. Org. Chem. Front. 2015, 2, 1457; (c) Cai, S.; Tian, Y.; Zhang, J.; Liu, Z.; Lu, M.; Weng, W.; Huang, M. Adv. Synth. Catal. 2018, 360, 4084; (d) Lu, M.; Qin, H.; Lin, Z.; Huang, M.; Weng, W.; Cai, S. Org. Lett. 2018, 20, 7611; (e) Wang, H.; Xu, Q.; Yu, S. Org. Chem. Front. 2018, 5, 2224; (f) Wang, Q.-L.; Chen, Z.; Zhou, C.-S.; Xiong, B.-Q.; Zhang, P.-L.; Yang, C.-A.; Liu, Y.; Zhou, Q. Tetrahedron Lett. 2018, 59, 4551; (g) Yin, Y.; Weng, W.-Z.; Sun, J.-G.; Zhang, B. Org. Biomol. Chem. 2018, 16, 2356; (h) Wei, X.-J.; Noël, T. J. Org. Chem. 2018, 83, 11377.

    20. [20]

      Gu, L.; Gao, Y.; Ai, X.; Jin, C.; He, Y.; Li, G.; Yuan, M. Chem. Commun. 2017, 53, 12946.  doi: 10.1039/C7CC06484E

    21. [21]

      Zhou, N.-N.; Xu, P.; Li, W.-P.; Cheng, Y.-X.; Zhu, C.-J. Acta Chim. Sinica 2017, 75, 60.
       

    22. [22]

      Yu, J.; Wang, D.; Xu, Y.; Wu, Z.; Zhu, C. Adv. Synth. Catal. 2018, 360, 744.  doi: 10.1002/adsc.201701229

    23. [23]

      Tang, N.; Yang, S.; Wu, X.; Zhu, C. Tetrahedron 2019, 75, 1639.  doi: 10.1016/j.tet.2018.12.003

    24. [24]

      Wu, X.; Wang, M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Angew. Chem. 2018, 130, 1656.  doi: 10.1002/ange.201709025

    25. [25]

      Dondoni, A.; Marra, A. Chem. Rev. 2004, 104, 2557.  doi: 10.1021/cr020079l

    26. [26]

      Shu, W.; Genoux, A.; Li, Z.; Nevado, C. Angew. Chem., Int. Ed. 2017, 56, 10521.  doi: 10.1002/anie.201704068

    27. [27]

      Wang, N.; Gu, Q.-S.; Li, Z.-L.; Li, Z.; Guo, Y.-L.; Guo, Z.; Liu, X.-Y. Angew. Chem., Int. Ed. 2018, 57, 14225.  doi: 10.1002/anie.201808890

    28. [28]

      Wang, S.-F.; Cao, X.-P.; Li, Y. Angew. Chem., Int. Ed. 2017, 56, 13809.  doi: 10.1002/anie.201706597

    29. [29]

      Gonzalez-Gomez, J. C.; Ramirez, N. P.; Lana-Villarreal, T.; Bonete, P. Org. Biomol. Chem. 2017, 15, 9680.  doi: 10.1039/C7OB02579C

    30. [30]

      Li, J.; Liu, Z.; Wu, S.; Chen, Y. Org. Lett. 2019, 21, 2077.  doi: 10.1021/acs.orglett.9b00353

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    13. [13]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    14. [14]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    15. [15]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    19. [19]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(172)
  • Abstract views(4220)
  • HTML views(1270)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return