Citation: Ding Rui, Chen Si, Lv Jing, Gui Tai-jiang, Wang Xiao, Zhao Xiao-dong, Liu Jie, Li Bing-jun, Song Li-ying, Li Wei-hua. Review of Theoretical and Applied Research of Graphene in Anti-corrosion Film and Organic Anti-corrosion Coatings[J]. Acta Chimica Sinica, ;2019, 77(11): 1140-1155. doi: 10.6023/A19050174 shu

Review of Theoretical and Applied Research of Graphene in Anti-corrosion Film and Organic Anti-corrosion Coatings

  • Corresponding author: Song Li-ying, songliying@qdio.ac.cn Li Wei-hua, liweihua@qdio.ac.cn
  • † These authors contributed equally to this work
  • Received Date: 13 May 2019
    Available Online: 24 November 2019

    Fund Project: the National Science Fund for Distinguished Young Scholars 51525903China Postdoctoral Science Fund 2018M632726Open Research Fund supported by State Key Laboratory for Marine Coatings 20190601DRProject supported by the National Science Fund for Distinguished Young Scholars (No. 51525903), the National Natural Science Foundation of China (No. 51179182), China Postdoctoral Science Fund (No. 2018M632726) and Open Research Fund supported by State Key Laboratory for Marine Coatings (No. 20190601DR)the National Natural Science Foundation of China 51179182

Figures(12)

  • This paper summarized and collated domestic and foreign literatures on graphene anti-corrosion films and organic anti-corrosion coatings, and formed hierarchical and organized knowledge structures. The preparation, optimization and improvement of graphene anti-corrosion film were reviewed. The corrosion acceleration problems and solutions in the application were discussed. According to the role of graphene in organic anti-corrosion coatings, the improvement of shielding, bonding and self-repairing effect of graphene-based composite materials on organic anti-corrosion coatings are reviewed from the perspective of applied and theoretical research. And the improvement of graphene-based materials on electrochemical protection performance of cathodic-protective organic anti-corrosion coatings are discussed.
  • 加载中
    1. [1]

      Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.  doi: 10.1126/science.1102896

    2. [2]

      Day, C. Phys. Today 2010, 1063, 866.
       

    3. [3]

      Singh, R. R. K.; Tiwari, A. JOM 2014, 66, 637.  doi: 10.1007/s11837-014-0921-3

    4. [4]

      Hu, J.; Ji, Y.; Shi, Y.; Hui, F.; Duan, H.; Lanza, M. Ann. Mater. Sci. Eng. 2014, 1, 1.

    5. [5]

      Mittal, G.; Dhand, V.; Rhee, K. Y.; Park, S. J.; Lee, W. R. J. Ind. Eng. Chem. 2015, 21, 11.  doi: 10.1016/j.jiec.2014.03.022

    6. [6]

      Gergely, A. Corros. Rev. 2018, 36, 155.  doi: 10.1515/corrrev-2017-0016

    7. [7]

      Ding, R.; Li, W. J. Alloy. Compd. 2018, 764, 1039.  doi: 10.1016/j.jallcom.2018.06.133

    8. [8]

      Ding, R.; Chen, S.; Lv, J.; Zhang, W.; Zhao, X.-D.; Liu, J.; Wang, X.; Gui, T.-J.; Li, B.-J.; Tang, Y.-Z.; Li, W.-H. J. Alloy. Compd. 2019, 806, 611.  doi: 10.1016/j.jallcom.2019.07.256

    9. [9]

      Ding, R.; Chen, S.; Lv, J.; Zhao, X.-D.; Liu, J.; Li, W.-H.; Wang, X.; Gui, T.-J.; Li, B.-J.; Tang, Y.-Z. Paint Coating. Ind. 2019, 49, 66(in Chinese).

    10. [10]

      Fu, L. H.; Zhao, J. P.; Fang, L.; Hu, J. M. Surf. Technol. 2017, 46, 202(in Chinese).
       

    11. [11]

      Jiang, F. Y.; Wu, Y. H, ; Liu, G.; Zhao, W. J. Surf. Technol. 2017, 46, 126 (in Chinese).
       

    12. [12]

      Luo, J.; Wang, J. H.; Wen, S. G.; Yin, C. L.; Yu, D. Y.; Wu, Y. T. Paint Coating. Ind. 2017, 47, 69(in Chinese).
       

    13. [13]

      Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009, 9, 4359.  doi: 10.1021/nl902623y

    14. [14]

      Singh, R. R. K.; Chakraborty, B. P.; Lobo, D. E.; Gullapalli, H.; Sumandasa, M.; Kumar, A.; Choudhary, L.; Tkacz, R.; Ajayan, P. M.; Majumder, M. Carbon 2012, 50, 4040.  doi: 10.1016/j.carbon.2012.04.048

    15. [15]

      Prasai, D.; Tuberquia, J. C.; Harl, R. R.; Jennings, G. K.; Bolotin, K. I. ACS Nano 2012, 6, 1102.  doi: 10.1021/nn203507y

    16. [16]

      Pu, N. W.; Shi, G. N.; Liu, Y. M.; Sun, X.; Chang, J. K.; Sun, C. L.; Ger, M. D.; Chen, C. Y.; Wang, P. C.; Peng, Y. Y. J. Power Sources 2015, 282, 248.  doi: 10.1016/j.jpowsour.2015.02.055

    17. [17]

      Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Van, D. B. J.; Kelly, P. J. Phys. Rev. Lett. 2008, 101, 026803_1.  doi: 10.1103/PhysRevLett.101.026803

    18. [18]

      Zhao, Y.; Xie, Y.; Hui, Y. Y.; Tang, L.; Jie, W.; Jiang, Y.; Xu, L.; Shu, P. L.; Chai, Y. J. Mater. Chem. C 2013, 1, 4956.

    19. [19]

      Hsieh, Y. P.; Hofmann, M.; Chang, K. W.; Jian, G. J.; Li, Y. Y.; Chen, K. Y.; Yang, C. C.; Chang, W. S.; Chen, L. C. ACS Nano 2014, 8, 443.  doi: 10.1021/nn404756q

    20. [20]

      Zhang, Y. H.; Zhang, H. R.; Wang, B.; Chen, Z. Y. Appl. Phys. Lett. 2014, 104, 104110_1.

    21. [21]

      Wlasny, I.; Dabrowski, P.; Rogala, M.; Kowalczyk, P. J.; Pasternak, I.; Strupinski, W.; Baranowski, J. M.; Klusek, Z. Appl. Phys. Lett. 2013, 102, 111601_1.  doi: 10.1063/1.4795861

    22. [22]

      Zhou, F.; Li, Z.; Shenoy, G. J.; Li, L.; Liu, H. ACS Nano 2013, 7, 6939.  doi: 10.1021/nn402150t

    23. [23]

      Schriver, M.; Regan, W.; Gannett, W. J.; Zaniewski, A. M.; Crommie, M. F.; Zettl, A. ACS Nano 2013, 7, 5763.  doi: 10.1021/nn4014356

    24. [24]

      Anisur, M. R.; Chakraborty, B. P.; Easton, C. D.; Singh, R. R. K. Carbon 2018, 127, 131.  doi: 10.1016/j.carbon.2017.10.079

    25. [25]

      Tiwari, A.; Singh, Raman R. K. Mater. (Basel) 2017, 10, 1112.  doi: 10.3390/ma10101112

    26. [26]

      Wu, T.; Ding, G.; Shen, H.; Wang, H.; Sun, L.; Jiang, D.; Xie, X.; Jiang, M. Adv. Funct. Mater. 2013, 23, 198.  doi: 10.1002/adfm.201201577

    27. [27]

      Nair, R. R.; Wu, H. A.; Jayaram, P. N.; Grigorieva, I. V.; Geim, A. K. Science 2012, 335, 442.  doi: 10.1126/science.1211694

    28. [28]

      Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol. 2008, 3, 491.  doi: 10.1038/nnano.2008.199

    29. [29]

      Chang, K. C.; Ji, W. F.; Li, C. W.; Chang, C. H.; Peng, Y. Y.; Yeh, J. M.; Liu, W. R. Express Polym. Lett. 2014, 8, 908.  doi: 10.3144/expresspolymlett.2014.92

    30. [30]

      Rajabi, M.; Rashed, G. R.; Zaarei, D. Corros. Eng. Sci. Technol. 2014, 50, 1743278214Y.000.

    31. [31]

      Yang, H.; Shan, C.; Li, F.; Zhang, Q.; Han, D.; Niu, L. J. Mater. Chem. 2009, 19, 8856.  doi: 10.1039/b915228h

    32. [32]

      Tang, X.; Zhou, Y.; Peng, M. ACS Appl. Mater. Interfaces 2015, 8, 1854.

    33. [33]

      Pourhashem, S.; Vaezi, M. R.; Rashidi, A.; Bagherzadeh, M. R. Corros. Sci. 2016, 115, 78.

    34. [34]

      Xia, W.; Xue, H.; Wang, J.; Wang, T.; Song, L.; Guo, H.; Fan, X.; Gong, H.; He, J. Carbon 2016, 101, 315.  doi: 10.1016/j.carbon.2016.02.004

    35. [35]

      Li, Y.; Yang, Z.; Qiu, H.; Dai, Y.; Zheng, Q.; Li, J.; Yang, J. J. Mater. Chem. A 2014, 2, 14139.  doi: 10.1039/C4TA02262A

    36. [36]

      Zhang, Z.; Zhang, W.; Li, D.; Sun, Y.; Wang, Z.; Hou, C.; Chen, L.; Cao, Y.; Liu, Y. Int. J. of Mol. Sci. 2015, 16, 2239.  doi: 10.3390/ijms16012239

    37. [37]

      Zhang, Y.; Chi, H. J.; Zhang, W. H.; Sun, Y.; Liang, Q.; Gu, Y.; Jing, R. Nano-Micro Lett. 2014, 6, 80.  doi: 10.1007/BF03353772

    38. [38]

      Lu, H.; Zhang, S.; Li, W.; Cui, Y.; Yang, T. ACS Appl. Mater. Interfaces 2017, 9, 4034.  doi: 10.1021/acsami.6b13722

    39. [39]

      Hayatgheib, Y.; Ramezanzadeh, B.; Kardar, P.; Mahdavian, M. Corros. Sci. 2018, 133, 358.  doi: 10.1016/j.corsci.2018.01.046

    40. [40]

      Ramezanzadeh, B.; Ghasemi, E.; Mahdavian M.; Changizi, E.; Moghadam, M. H. M. Carbon 2015, 93, 555.  doi: 10.1016/j.carbon.2015.05.094

    41. [41]

      Christopher, G.; Kulandainathan, M. A.; Harichandran, G. Prog. Org. Coat. 2015, 89, 199.  doi: 10.1016/j.porgcoat.2015.09.022

    42. [42]

      Sun, W.; Wang, L.; Wu, T.; Pan, Y.; Liu, G. Carbon 2014, 79, 605.  doi: 10.1016/j.carbon.2014.08.021

    43. [43]

      Ma, Y.; Di, H.; Yu, Z.; Liang, L.; Liang, L.; Yang, P.; Zhang, Y.; Yin, D. Appl. Surf. Sci. 2016, 360, 936.  doi: 10.1016/j.apsusc.2015.11.088

    44. [44]

      Yu, Z.; Di, H.; Ma, Y.; Lv, L.; Pan, Y.; Zhang, C.; He, Y. Appl. Surf. Sci. 2015, 351, 986.  doi: 10.1016/j.apsusc.2015.06.026

    45. [45]

      Yu, Z.; Di, H.; Ma, Y.; He, Y.; Liang, L.; Lv, L.; Ran, X.; Pan, Y.; Luo, Z. Surf. Coat. Technol. 2015, 276, 471.  doi: 10.1016/j.surfcoat.2015.06.027

    46. [46]

      Yu, K.; Wang, M.; Qian, K.; Lu, X.; Sun, J. Fiber. Polym. 2016, 17, 453.  doi: 10.1007/s12221-016-5862-8

    47. [47]

      Li, J.; Yu, K.; Qian, K.; Cao, H.; Lu, X.; Sun, J. Nanoscale Res. Lett. 2014, 9, 172_1.  doi: 10.1186/1556-276X-9-172

    48. [48]

      Liang, K.; Chao, G. Nanoscale 2011, 3, 519.  doi: 10.1039/C0NR00609B

    49. [49]

      Fan, Y.; Jiang, W.; Kawasaki, A. Adv. Funct. Mater. 2012, 22, 3882.  doi: 10.1002/adfm.201200632

    50. [50]

      Liu, L. B.; Tan, K. F.; Zhang, J. Bull. Chin. Ceram. Soc. 2005, 24, 91(in Chinese).
       

    51. [51]

      Liu, S.; Gu, L.; Zhao, H.; Chen, J.; Yu, H. J. Mater. Sci. Technol. 2016, 32, 425.  doi: 10.1016/j.jmst.2015.12.017

    52. [52]

      Chen, C.; Qiu, S. H.; Cui, M. J.; Qin, S. L.; Yan, G. P.; Zhao, H. C.; Wang, L. P.; Xue, Q. J. Carbon 2017, 114, 356.  doi: 10.1016/j.carbon.2016.12.044

    53. [53]

      Yang, T.; Cui, Y.; Li, Z.; Zeng, H.; Luo, S.; Li, W. J. Hazard. Mater. 2018, 357, 475.  doi: 10.1016/j.jhazmat.2018.06.038

    54. [54]

      Ayán-Varela, M.; Paredes, J. I.; Guardia, L.; Villar-Rodil, S.; Munuera, J. M.; Díaz-González, M.; Fernández-Sánchez, C.; Martínez-Alonso, A.; Tascón, J. M. ACS Appl. Mater. Interfaces 2015, 7, 10293.  doi: 10.1021/acsami.5b00910

    55. [55]

      Li, X.; Zhao, D. L.; Bai, L. Z.; Li, F.; Zhao, H. J.; Gao, L. F. J. Funct. Mater. 2013, 44, 96(in Chinese).  doi: 10.3969/j.issn.1001-9731.2013.01.022

    56. [56]

      Pourhashem, S.; Vaezi, M. R.; Rashidi, A.; Bagherzadeh, M. R. Prog. Org. Coat. 2017, 111, 47.  doi: 10.1016/j.porgcoat.2017.05.008

    57. [57]

      Pourhashem, S.; Rashidi, A.; Vaezi, M. R.; Bagherzadeh, M. R. Surf. Coat. Technol. 2017, 317, 1.  doi: 10.1016/j.surfcoat.2017.03.050

    58. [58]

      Mo, M.; Zhao, W.; Chen, Z.; Yu, Q.; Zeng, Z.; Wu, X.; Xue, Q. RSC Adv. 2015, 5, 56486.  doi: 10.1039/C5RA10494G

    59. [59]

      Mo, M.; Zhao, W.; Chen, Z.; Liu, E.; Xue, Q. RSC Adv. 2016, 6, 7780.  doi: 10.1039/C5RA24823J

    60. [60]

      Ramezanzadeh, B.; Bahlakeh, G.; Mohamadzadeh, M. M. H.; Miraftab, R. Chem. Eng. J. 2018, 335, 737.  doi: 10.1016/j.cej.2017.11.019

    61. [61]

      Ramezanzadeh, B.; Niroumandrad, S.; Ahmadi, A.; Mahdavian, M.; Moghadam, M. H. M. Corros. Sci. 2016, 103, 283.  doi: 10.1016/j.corsci.2015.11.033

    62. [62]

      Yu, Y.-H.; Lin, Y.-Y.; Lin, C.-H.; Chan, C.-C.; Huang, Y.-C. Polym. Chem. 2014, 5, 535.  doi: 10.1039/C3PY00825H

    63. [63]

      Chang, K. C.; Hsu, C. H.; Lu, H. I.; Ji, W. F.; Chang, C. H.; Li, W. Y.; Chuang, T. L.; Yeh, J. M.; Liu, W. R.; Tsai, M. H. Express Polym. Lett. 2014, 8, 243.  doi: 10.3144/expresspolymlett.2014.28

    64. [64]

      Qi, K.; Sun, Y.; Duan, H.; Guo, X. Corros. Sci. 2015, 98, 500.  doi: 10.1016/j.corsci.2015.05.056

    65. [65]

      Chang, C. H.; Huang, T. C.; Peng, C. W.; Yeh, T. C.; Lu, H. I.; Hung, W. I.; Weng, C. J.; Yang, T. I.; Yeh J. M. Carbon 2012, 50, 5044.  doi: 10.1016/j.carbon.2012.06.043

    66. [66]

      Jiang, N.; Wang, L. P.; Yu, H. B.; Liu, Z. P.; Liu, G. Q.; Chen, T. Advanced Carbon Materials Science and Functional Application Technology, Science Press, Beijing, 2016 (in Chinese).

    67. [67]

      Zhou, J.; Wang, Q.; Sun, Q.; Chen, X.; Kawazoe, Y.; Jena, P. Nano Lett. 2009, 9, 3867.  doi: 10.1021/nl9020733

    68. [68]

      Wei, J. R. Research on Controllable Arrangement of Fe2O3/Graphene on Carbon Fiber and Influence to the Interface, Harbin Industrial University, 2014 (in Chinese). 

    69. [69]

      Yang, X.; Zhang, X.; Ma, Y.; Huang, Y.; Wang, Y.; Chen, Y. J. Mater. Chem. 2009, 19, 2710.  doi: 10.1039/b821416f

    70. [70]

      Yan, H.; Wang, R.; Li, Y.; Long, W. J. Electron. Mater. 2015, 44, 658.  doi: 10.1007/s11664-014-3561-z

    71. [71]

      Renteria, J.; Legedza, S.; Salgado, R.; Balandin, M. P.; Ramirez, S.; Saadah, M.; Kargar, F.; Balandin, A. A. Mater. Design 2015, 88, 214.  doi: 10.1016/j.matdes.2015.08.135

    72. [72]

      Ding, R.; Chen, S.; Zhou, N.; Zheng, Y.; Tian, H.; Li, B.; Wang, X.; Gui, T.; Li, W.; Yu, H. J. Alloy. Compd. 2019, 784, 756.  doi: 10.1016/j.jallcom.2019.01.070

    73. [73]

      Dong, R. Y.; Cao, P.; Cao, G. X.; Hu, G. J.; Cao, B. Y. Acta Phys. Sinica 2017, 66, 218(in Chinese).
       

    74. [74]

      Pang, H.; Chen, C.; Zhang, Y. C.; Ren, P. G.; Yan, D. X.; Li, Z. M. Carbon 2011, 49, 1980.  doi: 10.1016/j.carbon.2011.01.023

    75. [75]

      Zhao, X.; Zhang, Q.; Hao, Y.; Li, Y.; Fang, Y.; Chen, D. Macromolecules 2010, 43, 9411.  doi: 10.1021/ma101456y

    76. [76]

      Zhang, Y.; Tian, J.; Zhong, J.; Shi, X. ACS Nano 2018, 12, 10189.  doi: 10.1021/acsnano.8b05183

    77. [77]

      Parhizkar, N.; Shahrabi, T.; Ramezanzadeh, B. Corros. Sci. 2017, 123, 55.  doi: 10.1016/j.corsci.2017.04.011

    78. [78]

      Parhizkar, N.; Ramezanzadeh, B.; Shahrabi, T. Appl. Surf. Sci. 2018, 439, 45.  doi: 10.1016/j.apsusc.2017.12.240

    79. [79]

      Wei, Y.; Wang, J.; Jia, X.; Yeh, J. M.; Spellane, P. Polymer 1995, 36, 4535.  doi: 10.1016/0032-3861(95)96866-7

    80. [80]

      Wei, Y.; Yang, C.; Ding, T. Tetrahedron Lett. 1996, 37, 731.  doi: 10.1016/0040-4039(95)02300-3

    81. [81]

      Huang, H. Y.; Huang, T. C.; Yeh, T. C.; Tsai, C. Y.; Lai, C. L.; Tsai, M. H.; Yeh, J. M.; Chou, Y. C. Polymer 2011, 52, 2391.  doi: 10.1016/j.polymer.2011.03.030

    82. [82]

      Huang, K. Y.; Jhuo, Y. S.; Wu, P. S.; Lin, C. H.; Yu, Y. H.; Yeha, J. M. Eur. Polym. J. 2009, 45, 485.  doi: 10.1016/j.eurpolymj.2008.10.033

    83. [83]

      Ye, Y.-W.; Zhang, D.-W.; Liu, T.; Liu, Z.-Y.; Pu, J.-B.; Liu, W.; Zhao, H.-C.; Li, X.-G.; Wang, L.-P. Carbon 2019, 142, 164.  doi: 10.1016/j.carbon.2018.10.050

    84. [84]

      Taheri, N. N.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G. J. Ind. Eng. Chem. 2018, 63, 322.  doi: 10.1016/j.jiec.2018.02.033

    85. [85]

      Ramezanzadeh, B.; Bahlakeh, G.; Ramezanzadeh, M. Corros. Sci. 2018, 137, 111.  doi: 10.1016/j.corsci.2018.03.038

    86. [86]

      Qiu, S. H.; Li, W.; Zheng, W. R.; Zhao, H. C.; Wang, L. P. ACS Appl. Mater. Interfaces 2017, 9, 34294.  doi: 10.1021/acsami.7b08325

    87. [87]

      Gupta, R. K.; Malviya, M.; Verma, C.; Quraishi, M. A. Mater. Chem. Phys. 2017, 198, 360.  doi: 10.1016/j.matchemphys.2017.06.030

    88. [88]

      Yu, Z.; Lv, L.; Ma, Y.; Di, H.; He, Y. RSC Adv. 2016, 6, 18217.  doi: 10.1039/C5RA23595B

    89. [89]

      Liu, C. B.; Zhao, H. C.; Hou, P. M.; Qian, B.; Wang, X.; Guo, C. Y.; Wang, L. P. ACS Appl. Mater. Interfaces 2018, 10, 36229.  doi: 10.1021/acsami.8b11108

    90. [90]

      Nikpour, B.; Ramezanzadeh, B.; Bahlakeh, G.; Mahdavian, M. Corros. Sci. 2017, 127, 240.  doi: 10.1016/j.corsci.2017.08.029

    91. [91]

      Ramezanzadeh, B.; Kardar, P.; Bahlakeh, G.; Hayatgheib, Y.; Mahdavian, M. J. Phys. Chem. C 2017, 121, 20433.  doi: 10.1021/acs.jpcc.7b04323

    92. [92]

      Chaudhry, A. U.; Mittal, V.; Mishra, B. RSC Adv. 2015, 5, 80365.  doi: 10.1039/C5RA12988E

    93. [93]

      Liu, C.; Du, P.; Zhao, H.; Wang, L. ACS Appl. Nano Mater. 2018, 1, 1385.  doi: 10.1021/acsanm.8b00149

    94. [94]

      Wang, H. L.; Hao, Q. L.; Yang, X. J.; Lu, L. D.; Wang, X. Nanoscale 2010, 2, 2164.  doi: 10.1039/c0nr00224k

    95. [95]

      Sun, W.; Wang, L.; Wu, T.; Pan, Y.; Liu, G. J. Mater. Chem. A 2015, 3, 16843.  doi: 10.1039/C5TA04236D

    96. [96]

      Ding, J. H.; Zhao, H. R.; Zheng, Y.; Zhao, X.; Yu, H. B. Carbon 2018, 138, 197.  doi: 10.1016/j.carbon.2018.06.018

    97. [97]

      Qin, G. Z.; Wang, S. Petro. Chem. Equipment 2001, 5, 55(in Chinese).
       

    98. [98]

      Wei, Y.; Li, R. L. Coat. Prot. 2008, 29, 6(in Chinese).
       

    99. [99]

      Xie, D. M.; Hu, J. M.; Tong, S. P.; Wang, J. M.; Zhang, J. Q. J. Chin. Soc. Corros. Prot. 2004, 24, 314(in Chinese).  doi: 10.3969/j.issn.1005-4537.2004.05.014

    100. [100]

      Du, C. S. Corros. Prot. 1999, 168(in Chinese).
       

    101. [101]

      Meroufel, A.; Touzain, S. Prog. Org. Coat. 2007, 59, 197.  doi: 10.1016/j.porgcoat.2006.09.005

    102. [102]

      Marchebois, H.; Savall, C.; Bernard, J.; Touzain, S. Electrochim. Acta 2004, 49, 2945.  doi: 10.1016/j.electacta.2004.01.053

    103. [103]

      Marchebois, H.; Touzain, S.; Joiret, S.; Bernard, J.; Savall, C. Prog. Org. Coat. 2002, 45, 415.  doi: 10.1016/S0300-9440(02)00145-5

    104. [104]

      Marchebois, H.; Joiret, S.; Savall, C.; Bernard, J.; Touzain, S. Surf. Coat. Technol. 2002, 157, 151.  doi: 10.1016/S0257-8972(02)00147-0

    105. [105]

      Kalendová, A.; Vesel , D.; Kohl, M.; Stejskal, J. Prog. Org. Coat. 2015, 78, 1.  doi: 10.1016/j.porgcoat.2014.10.009

    106. [106]

      Cubides, Y.; Castaneda, H. Corros. Sci. 2016, 109, 145.  doi: 10.1016/j.corsci.2016.03.023

    107. [107]

      Gergely, A.; Pászti, Z.; Mihály, J.; Drotár, E.; Török, T. Prog. Org. Coat. 2015, 78, 437.  doi: 10.1016/j.porgcoat.2013.09.016

    108. [108]

      Gergely, A.; Pászti, Z.; Mihály, J.; Drotár, E.; Török, T. Prog. Org. Coat. 2014, 77, 412.  doi: 10.1016/j.porgcoat.2013.11.004

    109. [109]

      Xie, S. Y. J. Beijing U. Chem. Technol. 2011, 38, 64.

    110. [110]

      Ramezanzadeh, B.; Arman, S. Y.; Mehdipour, M. J. Coat. Technol. Res. 2014, 11, 727.  doi: 10.1007/s11998-014-9580-0

    111. [111]

      Shirehjini, F. T.; Danaee, I.; Eskandari, H.; Zarei, D. J. Mater. Sci. Technol. 2016, 32, 1152.  doi: 10.1016/j.jmst.2016.08.017

    112. [112]

      Sauer, T.; Ren, M. S. Dev. Appl. Mater. 1985, 7, 39(in Chinese).
       

    113. [113]

      Zhang, J. Q. J. Chin. Soc. Corros. Prot. 1996, 16, 175(in Chinese).
       

    114. [114]

      Ding, R.; Zheng, Y.; Yu, H.; Li, W.; Wang, X.; Gui, T. J. Alloy. Compd. 2018, 748, 481.  doi: 10.1016/j.jallcom.2018.03.160

    115. [115]

      Ding, R.; Zheng, Y.; Yu, H. B. Paint Coating. Ind. 2017, 47, 1(in Chinese).
       

    116. [116]

      Ding, R.; Wang, X.; Jiang, J.; Gui, T.; Li, W. J. Mater. Eng. Perform. 2017, 26, 3319.  doi: 10.1007/s11665-017-2790-8

    117. [117]

      Ding, R.; Jiang, J.; Gui, T. J. Coating. Technol. Res. 2016, 13, 501.  doi: 10.1007/s11998-015-9769-x

    118. [118]

      Ding, R.; Cong, W.-W.; Jiang, J.-M.; Gui, T.-J. J. Coating. Technol. Res. 2016, 13, 981.  doi: 10.1007/s11998-016-9810-8

    119. [119]

      Hayatdavoudi, H.; Rahsepar, M. J. Alloy. Compd. 2017, 727, 1148.  doi: 10.1016/j.jallcom.2017.08.250

    120. [120]

      Ramezanzadeh, B.; Moghadam, M. H. M.; Shohani, N.; Mahdavian, M. Chem. Eng. J. 2017, 320, 363.  doi: 10.1016/j.cej.2017.03.061

    121. [121]

      Sun, Q.-X. Ph.D. Dissertation, Zhejiang University, Hangzhou, 2004(in Chinese).

    122. [122]

    123. [123]

    124. [124]

      Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys. 2009, 81, 1.  doi: 10.1103/RevModPhys.81.1

    125. [125]

      Ando, T. Npg Asia Mater. 2009, 1, 17.  doi: 10.1038/asiamat.2009.1

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    7. [7]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    8. [8]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    9. [9]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    10. [10]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    11. [11]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    12. [12]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    13. [13]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    14. [14]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    15. [15]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    16. [16]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    17. [17]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    20. [20]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

Metrics
  • PDF Downloads(100)
  • Abstract views(3214)
  • HTML views(838)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return