Citation: Jin Jikang, Zhang Fenglian, Wang Yifeng. Lewis Base-Boryl Radical Enabled Giese Reaction and Barton Decarboxylation of N-Hydroxyphthalimide (NHPI) Esters[J]. Acta Chimica Sinica, ;2019, 77(9): 889-894. doi: 10.6023/A19050173 shu

Lewis Base-Boryl Radical Enabled Giese Reaction and Barton Decarboxylation of N-Hydroxyphthalimide (NHPI) Esters

  • Corresponding author: Zhang Fenglian, zfl9@ustc.edu.cn Wang Yifeng, yfwangzj@ustc.edu.cn
  • Received Date: 13 May 2019
    Available Online: 9 September 2019

    Fund Project: Project supported by the National Natural Science Foundation of China (Nos. 21672195, 21702201) and the Fundamental Research Funds for the Central Universitiesthe National Natural Science Foundation of China 21672195the National Natural Science Foundation of China 21702201

Figures(2)

  • Decarboxylation of N-hydroxyphthalimide (NHPI) esters represents a powerful tool to generate carbon radicals, which has wide applications in the construction of C-C bonds and C-X bonds. Traditionally, the radical decarboxylation of NHPI esters has been enabled by transition-metal catalysis and photoredox catalysis. Recently, several visible light-mediated photosensor-free decarboxylation reactions have been reported with the use of special electron-donor systems. While notable, it's still highly desirable to develop transition-metal-free, mild, and general methods to realize the radical decarboxylation of NHPI esters. Herein, we report 4-dimethylaminopyridine (DMAP)-boryl radical enabled Giese reaction and Barton decarboxylation of NHPI esters. The reaction starts from the generation of DMAP-boryl radical in the presence of a radical initiator, which then adds specifically to the carbonyl oxygen atom of NHPI ester 2, followed by β-fragmentation to give a nucleophilic carbon radical intermediate. Addition of the carbon radical to electron-deficient alkenes affords the Giese reaction product 4. On the other hand, hydrogen atom transfer from thiol to the nucleophilic carbon radical results in the Barton decarboxylation products 5. The reactions exhibit a broad substrate scope and excellent functional group tolerance. NHPI esters of primary, secondary, and tertiary alkyl carboxylic acids, including bio-active natural products and drugs, proceed smoothly to give the corresponding products in moderate to good yields. A variety of electron-deficient alkenes, such as vinyl esters, vinyl amides and vinyl sulphones, can be used as the Michael acceptors. A general procedure for the Giese reaction is as following:a solution of NHPI ester 2 (0.5 mmol), 4-dimethylaminopyridine-borane (0.6 mmol), AIBN (0.1 mmol) and electron-deficient alkenes 3 (0.4 mmol) in toluene (4.0 mL) was stirred at 80℃ for 4 h under nitrogen atmosphere. After evaporation of solvent, the crude residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford Giese reaction product 4. A general procedure for the Barton decarboxylation is as following:a solution of NHPI ester 2 (0.5 mmol), 4-dimethylaminopyridine-borane (0.55 mmol), TBHN (0.1 mmol) and PhSH (0.1 mmol) in benzotrifluoride (5.0 mL) was stirred at 80℃ for 1 h under nitrogen atmosphere. After evaporation of solvent, the crude residue was purified by flash column chromatography on silica gel (petroleum ether/ethyl acetate) to afford decarboxylative reduction product 5.
  • 加载中
    1. [1]

      Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012, 134, 14330.  doi: 10.1021/ja306638s

    2. [2]

      Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 4258.  doi: 10.1021/ja210361z

    3. [3]

      Yin, F.; Wang, Z.; Li, Z.; Li, C. J. Am. Chem. Soc. 2012, 134, 10401.  doi: 10.1021/ja3048255

    4. [4]

      Liu, C.; Wang, X.; Li, Z.; Cui, L.; Li, C. J. Am. Chem. Soc. 2015, 137, 9820.  doi: 10.1021/jacs.5b06821

    5. [5]

      Cui, L.; Chen, H.; Liu, C.; Li, C. Org. Lett. 2016, 18, 2188.  doi: 10.1021/acs.orglett.6b00802

    6. [6]

      Tan, X.; Liu, Z.; Shen, H.; Zhang, P.; Zhang, Z.; Li, C. J. Am. Chem. Soc. 2017, 139, 12430.  doi: 10.1021/jacs.7b07944

    7. [7]

      Dong, Y.; Wang, Z.; Li, C. Nat. Commun. 2017, 8, 277.  doi: 10.1038/s41467-017-00376-z

    8. [8]

      Tan, X.; Song, T.; Wang, Z.; Chen, H.; Cui, L.; Li, C. Org. Lett. 2017, 19, 1634.  doi: 10.1021/acs.orglett.7b00439

    9. [9]

      Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136, 5257.  doi: 10.1021/ja501621q

    10. [10]

      Johnston, C. P.; Smith, R. T.; Allmendinger, S.; MacMillan, D. W. C. Nature 2016, 536, 322.  doi: 10.1038/nature19056

    11. [11]

      Bloom, S.; Liu, C.; K lmel, D. K.; Qiao, J. X.; Zhang, Y.; Poss, M. A.; Ewing, W. R.; MacMillan, D. W. C. Nat. Chem. 2017, 10, 205.
       

    12. [12]

      Kautzky, J. A.; Wang, T.; Evans, R. W.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 6522.  doi: 10.1021/jacs.8b02650

    13. [13]

      Liang, Y.; Zhang, X.; MacMillan, D. W. C. Nature 2018, 559, 83.  doi: 10.1038/s41586-018-0234-8

    14. [14]

      Le Vaillant, F.; Courant, T.; Waser, J. Angew. Chem., Int. Ed. 2015, 54, 11200.  doi: 10.1002/anie.201505111

    15. [15]

      Zhou, Q.-Q.; Guo, W.; Ding, W.; Wu, X.; Chen, X.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 11196.  doi: 10.1002/anie.201504559

    16. [16]

      Okada, K.; Okamoto, K.; Oda, M. J. Am. Chem. Soc. 1988, 110, 8736.  doi: 10.1021/ja00234a047

    17. [17]

      Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda, M. J. Am. Chem. Soc. 1991, 113, 9401.  doi: 10.1021/ja00024a074

    18. [18]

      Cornella, J.; Edwards, J. T.; Qin, T.; Kawamura, S.; Wang, J.; Pan, C.-M.; Gianatassio, R.; Schmidt, M.; Eastgate, M. D.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 2174.  doi: 10.1021/jacs.6b00250

    19. [19]

      Xuan, J.; Zhang, Z.-G.; Xiao, W.-J. Angew. Chem., Int. Ed. 2015, 54, 15632.  doi: 10.1002/anie.201505731

    20. [20]

      Huang, H.; Jia, K.; Chen, Y. ACS Catal. 2016, 6, 4983.  doi: 10.1021/acscatal.6b01379

    21. [21]

      Jin, Y.; Fu, H. Asian J. Org. Chem. 2017, 6, 368.  doi: 10.1002/ajoc.201600513

    22. [22]

      Li, Y.; Ge, L.; Muhammad, M. T.; Bao, H. Synthesis 2017, 49, 5263.  doi: 10.1055/s-0036-1590935

    23. [23]

      Malins, L. R. Pept. Sci. 2018, 110, 24049.  doi: 10.1002/pep2.24049

    24. [24]

      Qin, T.; Cornella, J.; Li, C.; Malins, L. R.; Edwards, J. T.; Kawamura, S.; Maxwell, B. D.; Eastgate, M. D.; Baran, P. S. Science 2016, 352, 801.  doi: 10.1126/science.aaf6123

    25. [25]

      Toriyama, F.; Cornella, J.; Wimmer, L.; Chen, T.-G.; Dixon, D. D.; Creech, G.; Baran, P. S. J. Am. Chem. Soc. 2016, 138, 11132.  doi: 10.1021/jacs.6b07172

    26. [26]

      Wang, J.; Qin, T.; Chen, T.-G.; Wimmer, L.; Edwards, J. T.; Cornella, J.; Vokits, B.; Shaw, S. A.; Baran, P. S. Angew. Chem., Int. Ed. 2016, 55, 9676.  doi: 10.1002/anie.201605463

    27. [27]

      Li, C.; Wang, J.; Barton, L. M.; Yu, S.; Tian, M.; Peters, D. S.; Kumar, M.; Yu, A. W.; Johnson, K. A.; Chatterjee, A. K.; Yan, M.; Baran, P. S. Science 2017, 356, 7355.  doi: 10.1126/science.aam7355

    28. [28]

      Qin, T.; Malins, L. R.; Edwards, J. T.; Merchant, R. R.; Novak, A. J. E.; Zhong, J. Z.; Mills, R. B.; Yan, M.; Yuan, C.; Eastgate, M. D.; Baran, P. S. Angew. Chem., Int. Ed. 2017, 56, 260.  doi: 10.1002/anie.201609662

    29. [29]

      Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A. M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.; Ackerman, L. K. G.; Weix, D. J. J. Am. Chem. Soc. 2016, 138, 5016.  doi: 10.1021/jacs.6b01533

    30. [30]

      Huang, L.; Olivares, A. M.; Weix, D. J. Angew. Chem., Int. Ed. 2017, 56, 11901.  doi: 10.1002/anie.201706781

    31. [31]

      Lackner, G. L.; Quasdorf, K. W.; Overman, L. E. J. Am. Chem. Soc. 2013, 135, 15342.  doi: 10.1021/ja408971t

    32. [32]

      Lackner, G. L.; Quasdorf, K. W.; Pratsch, G.; Overman, L. E. J. Org. Chem. 2015, 80, 6012.  doi: 10.1021/acs.joc.5b00794

    33. [33]

      Slutskyy, Y.; Overman, L. E. Org. Lett. 2016, 18, 2564.  doi: 10.1021/acs.orglett.6b00895

    34. [34]

      Tlahuext-Aca, A.; Garza-Sanchez, R. A.; Glorius, F. Angew. Chem., Int. Ed. 2017, 56, 3708.  doi: 10.1002/anie.201700049

    35. [35]

      Kachkovskyi, G.; Faderl, C.; Reiser, O. Adv. Synth. Catal. 2013, 355, 2240.  doi: 10.1002/adsc.201300221

    36. [36]

      Jiang, M.; Yang, H.; Fu, H. Org. Lett. 2016, 18, 1968.  doi: 10.1021/acs.orglett.6b00489

    37. [37]

      Jin, Y.; Jiang, M.; Wang, H.; Fu, H. Sci. Rep. 2016, 6, 20068.  doi: 10.1038/srep20068

    38. [38]

      Candish, L.; Teders, M.; Glorius, F. J. Am. Chem. Soc. 2017, 139, 7440.  doi: 10.1021/jacs.7b03127

    39. [39]

      Fawcett, A.; Pradeilles, J.; Wang, Y.; Mutsuga, T.; Myers, E. L.; Aggarwal, V. K. Science 2017, 357, 283.  doi: 10.1126/science.aan3679

    40. [40]

      Fu, M.-C.; Shang, R.; Zhao, B.; Wang, B.; Fu, Y. Science 2019, 363, 1429.  doi: 10.1126/science.aav3200

    41. [41]

      Gao, L.; Wang, G.; Cao, J.; Yuan, D.; Xu, C.; Guo, X.; Li, S. Chem. Commun. 2018, 54, 11534.  doi: 10.1039/C8CC06152A

    42. [42]

      Yang, J.; Li, Z.; Zhu, S. Chin. J. Org. Chem. 2017, 37, 2481.
       

    43. [43]

      Ren, S.-C.; Zhang, F.-L.; Qi, J.; Huang, Y.-S.; Xu, A.-Q.; Yan, H.-Y.; Wang, Y.-F. J. Am. Chem. Soc. 2017, 139, 6050.  doi: 10.1021/jacs.7b01889

    44. [44]

      Yu, Y.-J.; Zhang, F.-L.; Cheng, J.; Hei, J.-H.; Deng, W.-T.; Wang, Y.-F. Org. Lett. 2018, 20, 24.  doi: 10.1021/acs.orglett.7b03201

    45. [45]

      Jin, J.-K.; Zhang, F.-L.; Zhao, Q.; Lu, J.-A.; Wang, Y.-F. Org. Lett. 2018, 20, 7558.  doi: 10.1021/acs.orglett.8b03303

    46. [46]

      Qi, J.; Zhang, F.-L.; Huang, Y.-S.; Xu, A.-Q.; Ren, S.-C.; Yi, Z.-Y.; Wang, Y.-F. Org. Lett. 2018, 20, 2360.  doi: 10.1021/acs.orglett.8b00694

    47. [47]

      Ren, S.-C.; Zhang, F.-L.; Xu, A.-Q.; Yang, Y.; Zheng, M.; Zhou, X.; Fu, Y.; Wang, Y.-F. Nat. Commun. 2019, 10, 1934.  doi: 10.1038/s41467-019-09825-3

    48. [48]

      Franz, J. A.; Bushaw, B. A.; Alnajjar, M. S. J. Am. Chem. Soc. 1989, 111, 268.  doi: 10.1021/ja00183a040

    49. [49]

      Newcomb, M.; Choi, S.-Y.; Horner, J. H. J. Org. Chem. 1999, 64, 1225.  doi: 10.1021/jo981930s

    50. [50]

      Crich, D.; Grant, D.; Krishnamurthy, V.; Patel, M. Acc. Chem. Res. 2007, 40, 453.  doi: 10.1021/ar600020v

    51. [51]

      Pan, X.; Lac te, E.; Lalevée, J.; Curran, D. P. J. Am. Chem. Soc. 2012, 134, 5669.  doi: 10.1021/ja300416f

    52. [52]

      Dénès, F.; Pichowicz, M.; Povie, G.; Renaud, P. Chem. Rev. 2014, 114, 2587.  doi: 10.1021/cr400441m

  • 加载中
    1. [1]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    6. [6]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    13. [13]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

Metrics
  • PDF Downloads(59)
  • Abstract views(2406)
  • HTML views(445)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return