Citation: Ye Shengqing, Wu Jie. 4-Substituted Hantzsch Esters as Alkylation Reagents in Organic Synthesis[J]. Acta Chimica Sinica, ;2019, 77(9): 814-831. doi: 10.6023/A19050170 shu

4-Substituted Hantzsch Esters as Alkylation Reagents in Organic Synthesis

  • Corresponding author: Wu Jie, Jie_wu@fudan.edu.cn
  • Received Date: 12 May 2019
    Available Online: 12 September 2019

    Fund Project: the National Natural Science Foundation of China 21532001the National Natural Science Foundation of China 21672037Project supported by the National Natural Science Foundation of China (Nos. 21672037, 21532001)

Figures(31)

  • Hantzsch Esters were first synthesized by Arthur Rudolf Hantzsch in 1881, and widely used in pharmaceutical chemistry. The application of Hantsch Esters in organic synthesis in the early time was mainly focused on the dehydrogenation of 1, 4-dihydrogen pyridines (DHPs) in the synthesis of functional pyridines. In 1955, Mauzerall and Westheimer found that Malachite Green could be reduced by Hantzsch Esters to generate the hydrogenated product. Then these DHPs were extensively used as a reductant for decades due to their electron and hydrogen donating properties. In recent years, scientist found that C-C bond cleavage at 4-position of 4-substituted Hantzsch Esters would lead alkyl transfer, and the alkylation process was a radical process. With the rapid development of free radical chemistry, various alkylation reactions using 4-substituted Hantzsch Esters as alkylation reagent have been developed, such as addition reactions of imines and alkenes; cross-coupling reactions with aryl halides; substitution reactions with functional aromatics; Tsuji-Trost reaction; radical insertion with sulfur dioxide; and asymmetric alkylation etc. The advantages in alkylation transfer by using 4-substituted Hantzsch Esters as alkyl source in the past five years were witnessed dramatically:(1) Highly toxic alkyl metal reagents could be avoided in the alkylation reactions; (2) Compared with the moisture sensitivity of alkyl metal reagents Hantzsch Esters are easily handling; (3) 1, 4-Dihydrogen pyridines (DHPs) are biologically-inspired model molecular of reduced nicotinamide adenine dinucleotide (NADH), which would expand the application in biosynthesis. A brief summary in this field is presented in this review, and the advances are classified according to different reaction types. Although these creativity works were developed, there are still some challenges:(1) Could aromatic groups at 4-position of 4-substituted Hantzsch Esters serve as arylation reagents? (2) How to recover the rest pyridine part of Hantzsch Esters after alkylation; (3) New type reactions need to be developed for the asymmetric synthesis.
  • 加载中
    1. [1]

      Hantzsch, A. Ber. Dtsch. Chem. Ges. 1881, 14, 1637.  doi: 10.1002/cber.18810140214

    2. [2]

      (a) Janis, R. A.; Triggle, D. J. J. Med. Chem. 1983, 25, 775. (b) Bocker, R. H.; Guengerich, F. P. J. Med. Chem. 1986, 29, 1596. (c) Xie, W.; Wu, Y.; Zhang, J.; Mei, Q.; Zhang, Y.; Zhu, N.; Liu, R.; Zhang, H. Eur. J. Med. Chem. 2018, 145, 35. (d) Xie, W.; Zhang, H.; He, J.; Zhang, J.; Yu, Q.; Luo, C.; Li, S. Bioorg. Med. Chem. Lett. 2017, 27, 530.

    3. [3]

      Bergstrom, F. W. Chem. Rev. 1944, 35, 77.  doi: 10.1021/cr60111a001

    4. [4]

      Mauzerall, D.; Westheimer, F. H. J. Am. Chem. Soc. 1955, 77, 2261.  doi: 10.1021/ja01613a070

    5. [5]

      For selected reviews see: (a) Ouellet, S. G.; Walji, A. M.; Macmillan, D. W. C. Acc. Chem. Res. 2007, 40, 1327. (b) de Vries, J. G.; Mrsic, N. Catal. Sci. Technol. 2011, 1, 727. (c) Zheng, C.; You, S.-L. Chem. Soc. Rev. 2012, 41, 2498. (d) Huang, W.; Cheng, X. Synlett 2017, 28, 148. (e) Li, X.; Meng, Y.; Yi, P.; Stepień, M.; Chmielewski, P. J. Angew. Chem., Int. Ed. 2017, 56, 10810.

    6. [6]

      Loev, B.; Snader, K. M. J. Org. Chem. 1965, 30, 1914.  doi: 10.1021/jo01017a048

    7. [7]

      Wei, Z.; Li, J.; Wang, Z.; Li, P.; Wang, Y. Chin. J. Org. Chem. 2017, 37, 1835(in Chinese).
       

    8. [8]

      For selected examples see: (a) Zou, Y.-Q.; Hörmann, F. M.; Bach, T. Chem. Soc. Rev. 2018, 47, 278. (b) Wang, F.; Chen, P.; Liu, G. Acc. Chem. Res. 2018, 51, 2036. (c) Wang, K.; Kong, W. Chin. J. Chem. 2018, 36, 247. (d) Qiu, S.; Wang, C.; Xie, S.; Huang, X.; Chen, L.; Zhao, Y.; Zeng, Z. Chem. Commun. 2018, 54, 11383. (e) Xie, L.-Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; Li, W.-F.; Cao, Z.; He, W.-M. Org. Chem. Front. 2018, 5, 2604. (f) Lu, L.-H.; Zhou, S.-J.; He, W.-B.; Xia, W.; Chen, P.; Yu, X.; Xu, X.; He, W.-M. Org. Biomol. Chem. 2018, 16, 9064. (g) Zheng, Y.; Liu, M.; Qiu, G.; Xie, W.; Wu, J. Tetrahedron 2019, 75, 1663. (h) Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Green Chem. 2018, 20, 3038. (i) Xie, L.-Y.; Peng, S.; Liu, F.; Yi, J.-Y.; Wang, M.; Tang, Z.; Xu, X.; He, W.-M. Adv. Synth. Catal. 2018, 360, 4259. (j) Xie, L.-Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; Li, W.-F.; Cao, Z.; He, W.-M. Org. Chem. Front. 2018, 5, 2604. (k) Guo, T.; Wei, X.-N.; Liu, Y.; Zhang, P.-K.; Zhao, Y.-H. Org. Chem. Front. 2019, 6, 1414.

    9. [9]

    10. [10]

      Li, G.; Chen, R.; Wu, L.; Fu, Q.; Zhang, X.; Tang, Z. Angew. Chem., Int. Ed. 2013, 52, 8432.  doi: 10.1002/anie.201303696

    11. [11]

      Zhang, H.-H.; Yu, S. J. Org. Chem. 2017, 82, 9995.  doi: 10.1021/acs.joc.7b01425

    12. [12]

      Gu, F.; Huang, W.; Liu, X.; Chen, W.; Cheng, X. Adv. Synth. Catal. 2017, 360, 925.

    13. [13]

      Wu, Q.-Y.; Min, Q.-Q.; Ao, G.-Z.; Liu, F. Org. Biomol. Chem. 2018, 16, 6391.  doi: 10.1039/C8OB01641K

    14. [14]

      Mcdonald, B. R.; Scheidt, K. A. Org. Lett. 2018, 20, 6881.

    15. [15]

      Van Leeuwen, T.; Buzzetti, L.; Perego, L. A.; Melchiorre, P. Angew. Chem., Int. Ed. 2019, 58, 4953.  doi: 10.1002/anie.201814497

    16. [16]

      Milligan, J. A.; Phelan, J. P.; Polites, V. C.; Kelly, C. B.; Molander, G. A. Org. Lett. 2018, 20, 6840.  doi: 10.1021/acs.orglett.8b02968

    17. [17]

      Chen, H.; Anand, D.; Zhou, L. Asian J. Org. Chem. 2019, 8, 661.  doi: 10.1002/ajoc.201900026

    18. [18]

      Chen, W.; Liu, Z.; Tian, J.; Li, J.; Ma, J.; Cheng, X.; Li, G. J. Am. Chem. Soc. 2016, 138, 12312.  doi: 10.1021/jacs.6b06379

    19. [19]

      Nakajima, K.; Nojima, S.; Nishibayashi, Y. Angew. Chem., Int. Ed. 2016, 55, 14106.  doi: 10.1002/anie.201606513

    20. [20]

      Gutiérrez-Bonet, Á.; Tellis, J. C.; Matsui, J. K.; Vara, B. A.; Molander, G. A. ACS Catal. 2016, 6, 8004.  doi: 10.1021/acscatal.6b02786

    21. [21]

      Dumoulin, A.; Matsui, J. K.; Gutiérrez-Bonet, Á.; Molander, G. A. Angew. Chem., Int. Ed. 2018, 57, 6614.  doi: 10.1002/anie.201802282

    22. [22]

      Badir, S. O.; Dumoulin, A.; Matsui, J. K.; Molander, G. A. Angew. Chem., Int. Ed. 2018, 57, 6610.  doi: 10.1002/anie.201800701

    23. [23]

      Nakajima, K.; Guo, X.; Nishibayashi, Y. Chem. Asian J. 2018, 13, 3653.  doi: 10.1002/asia.201801542

    24. [24]

      Buzzetti, L.; Prieto, A.; Roy, S. R.; Melchiorre, P. Angew. Chem., Int. Ed. 2017, 56, 15039.  doi: 10.1002/anie.201709571

    25. [25]

    26. [26]

      Liu, X.; Liu, R.; Dai, J.; Cheng, X.; Li, G. Org. Lett. 2018, 20, 6906.  doi: 10.1021/acs.orglett.8b03050

    27. [27]

      Song, Z.-Y.; Zhang, C.-L.; Ye, S. Org. Biomol. Chem. 2019, 17, 181.  doi: 10.1039/C8OB02912A

    28. [28]

      Li, G.; Wu, L.; Lv, G.; Liu, H.; Fu, Q.; Zhang, X.; Tang, Z. Chem. Commun. 2014, 50, 6246.  doi: 10.1039/C4CC01119H

    29. [29]

      Nakajima, K.; Nojima, S.; Sakata, K.; Nishibayashi, Y. ChemCatChem 2016, 8, 1028.  doi: 10.1002/cctc.201600037

    30. [30]

      Wang, Z.-J.; Zheng, S.; Matsui, J. K.; Liu, Z.; Molander, G. A. Chem. Sci. 2019, 10, 4389.  doi: 10.1039/C9SC00776H

    31. [31]

      Cao, L.; Zheng, L.; Huang, Q. J. Organomet. Chem. 2014, 768, 56.  doi: 10.1016/j.jorganchem.2014.06.021

    32. [32]

      For selected examples see: (a) Xie, L.-Y.; Peng, S.; Tan, J.-X.; Sun, R.-X.; Yu, X.; Dai, N.-N.; Tang, Z.-L.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 16976. (b) Xie, L.-Y.; Peng, S.; Lu, L.-H.; Hu, J.; Bao, W.-H.; Zeng, F.; Tang, Z.; Xu, X.; He, W.-M. ACS Sustainable Chem. Eng. 2018, 6, 7989. (c) Xie, L.-Y.; Peng, S.; Jiang, L.-L.; Peng, X.; Xia, W.; Yu, X.; Wang, X.-X.; Cao, Z.; He, W.-M. Org. Chem. Front. 2019, 6, 167.

    33. [33]

      Gutiérrez-Bonet, Á.; Remeur, C.; Matsui, J. K.; Molander, G. A. J. Am. Chem. Soc. 2017, 139, 12251.  doi: 10.1021/jacs.7b05899

    34. [34]

      Matsui, J. K.; Gutiérrez-Bonet, Á.; Rotella, M.; Alam, R.; Gutierrez, O.; Molander, G. A. Angew. Chem., Int. Ed. 2018, 57, 15847.  doi: 10.1002/anie.201809919

    35. [35]

      For selected examples see: (a) Gong, X.; Wang, M.; Ye, S.; Wu, J. Org. Lett. 2019, 21, 1156. (b) Ye, S.; Qiu, G.; Wu, J. Chem. Commun. 2019, 55, 1013. (c) Ye, S.; Zheng, D.; Wu, J.; Qiu, G. Chem. Commun. 2019, 55, 2214. (d) Ye, S.; Li, Y.; Wu, J.; Li, Z. Chem. Commun. 2019, 55, 2489. (e) Gong, X.; Li, X.; Xie, W.; Wu, J.; Ye, S. Org. Chem. Front. 2019, 6, 1863. (f) Zhang, J.; Xie, W.; Ye, S.; Wu, J. Org. Chem. Front. 2019, 6, 2254. (g) Ye, S.; Xiang, T.; Li, X.; Wu, J. Org. Chem. Front. 2019, 6, 2183. (h) Ye, S.; Li, X.; Xie, W.; Wu, J. Asian J. Org. Chem. 2019, 8, 893. (i) Ye, S.; Li, X.; Xie, W.; Wu, J. Eur. J. Org. Chem. 2019, 10.1002/ejoc.201900396. (j) Zhang, J.; Li, X.; Xie, W.; Ye, S.; Wu, J. Org. Lett. 2019, 21, DOI: 10.1021/acs.orglett.9b01323.(k)Zong,Y.;Lang,Y.;Yang,M.;Li,X.;Fan,X.;Wu,J.Org.Lett.2019,21,1935.

    36. [36]

      Wang, X.; Li, H.; Qiu, G.; Wu, J. Chem. Commun. 2019, 55, 2062.  doi: 10.1039/C8CC10246E

    37. [37]

      Wang, X.; Yang, M.; Xie, W.; Fan, X.; Wu, J. Chem. Commun. 2019, 55, 6010.  doi: 10.1039/C9CC03004B

    38. [38]

      Verrier, C.; Alandini, N.; Pezzetta, C.; Moliterno, M.; Buzzetti, L.; Hepburn, H. B.; Vega-Penaloza, A.; Silvi, M.; Melchiorre, P. ACS Catal. 2018, 8, 1062.  doi: 10.1021/acscatal.7b03788

    39. [39]

      Goti, G.; Bieszczad, B.; Vega-Penaloza, A.; Melchiorre, P. Angew. Chem., Int. Ed. 2019, 58, 1213.  doi: 10.1002/anie.201810798

    40. [40]

      de Assis, F. F.; Huang, X.; Akiyama, M.; Pilli, R. A.; Meggers, E. J. Org. Chem. 2018, 83, 10922.  doi: 10.1021/acs.joc.8b01588

    41. [41]

      Zhang, H.-H.; Zhao, J.-J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.  doi: 10.1021/jacs.8b10766

    42. [42]

      Li, F.; Tian, D.; Fan, Y.; Lee, R.; Lu, G.; Yin, Y.; Qiao, B.; Zhao, X.; Xiao, Z.; Jiang, Z. Nat. Commun. 2019, DOI:10.1038/s41467-019-09857-9.  doi: 10.1038/s41467-019-09857-9

  • 加载中
    1. [1]

      Gaofeng WANGShuwen SUNYanfei ZHAOLixin MENGBohui WEI . Structural diversity and luminescence properties of three zinc coordination polymers based on bis(4-(1H-imidazol-1-yl)phenyl)methanone. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 849-856. doi: 10.11862/CJIC.20230479

    2. [2]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    3. [3]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    4. [4]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    5. [5]

      Keke HanWenjun RaoXiuli YouHaina ZhangXing YeZhenhong WeiHu Cai . Two new high-temperature molecular ferroelectrics [1,5-3.2.2-Hdabcni]X (X = ClO4, ReO4). Chinese Chemical Letters, 2024, 35(6): 108809-. doi: 10.1016/j.cclet.2023.108809

    6. [6]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    7. [7]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    8. [8]

      Bairu MengZongji ZhuoHan YuSining TaoZixuan ChenErik De ClercqChristophe PannecouqueDongwei KangPeng ZhanXinyong Liu . Design, synthesis, and biological evaluation of benzo[4,5]thieno[2,3-d]pyrimidine derivatives as novel HIV-1 NNRTIs. Chinese Chemical Letters, 2024, 35(6): 108827-. doi: 10.1016/j.cclet.2023.108827

    9. [9]

      Peiyan ZhuYanyan YangHui LiJinhua WangShiqing Li . Rh(Ⅲ)‐Catalyzed sequential ring‐retentive/‐opening [4 + 2] annulations of 2H‐imidazoles towards full‐color emissive imidazo[5,1‐a]isoquinolinium salts and AIE‐active non‐symmetric 1,1′‐biisoquinolines. Chinese Chemical Letters, 2024, 35(10): 109533-. doi: 10.1016/j.cclet.2024.109533

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    14. [14]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    15. [15]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    16. [16]

      Yingxiao ZongYangfei WeiXiaoqing LiuJunke WangHuanfang GuoJunli WangZhuangzhi ShiTao TuCheng YangChongyang WangLeyong Wang . The 4th CCL Organic Chemistry Forum held in Zhangye. Chinese Chemical Letters, 2024, 35(8): 109743-. doi: 10.1016/j.cclet.2024.109743

    17. [17]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    18. [18]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

Metrics
  • PDF Downloads(378)
  • Abstract views(13391)
  • HTML views(6880)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return