Citation: Gu Xuesong, Li Xiaogen, Xie Jianhua, Zhou Qilin. Recent Progress in Homogeneous Catalytic Hydrogenation of Esters[J]. Acta Chimica Sinica, ;2019, 77(7): 598-612. doi: 10.6023/A19050166 shu

Recent Progress in Homogeneous Catalytic Hydrogenation of Esters


  • Author Bio:


    Zhou, Qilin, E-mail:
  • Corresponding author: Xie Jianhua, jhxie@nankai.edu.cn
  • Received Date: 12 May 2019
    Available Online: 12 July 2019

    Fund Project: the National Natural Science Foundation of China 21532003Project supported by the National Natural Science Foundation of China (Nos. 21532003, 21790332, 21871152), and the "111" Project of the Ministry of Education of China (No. B06005)the National Natural Science Foundation of China 21790332the National Natural Science Foundation of China 21871152the "111" Project of the Ministry of Education of China B06005

Figures(12)

  • The reduction of esters to alcohols is one of the most important chemical transformations in the production of fine chemicals, such as pharmaceuticals, agricultural chemicals, fragrances, and biofuels. Homogeneous catalytic hydrogenation of esters represents a green, atom-economic, and sustainable alternative to conventional stoichiometric approaches, avoiding the generation of large amount of wastes and the difficulties arose in work-up procedure by using metal hydride reductants. Although challenges still exist, significant progress has been made in catalytic hydrogenation of esters over the last ten years. Numerous transition metal catalysts including noble metal (such as ruthenium, osmium, and iridium) complexes and base metal catalysts (such as iron, cobalt, and manganese) have been developed for the hydrogenation of esters. The ligands of the catalysts have been well studied. A wide range of bidentate ligands including diamines, amino-phosphines, pyridine-amines, N-heterocyclic carbene-amines, and bipyridines, tridentate pincer ligands containing diethylamine and pyridine skeletons, tetradentate ligands containing pyridine and bipyridine skeletons have been applied in the hydrogenation of esters. The efficiency of hydrogenation of esters has been significantly improved, and the highest turnover number (TON) reached 90000 for the hydrogenation of benchmark substrates such as ethyl acetate, ethyl benzoate, and γ-valerolactone. A significant breakthrough has also been made in the catalytic asymmetric hydrogenation of esters to chiral primary alcohols. The asymmetric hydrogenations of ketoesters, racemic δ-hydroxyesters, and racemic α-aryl/alkyl substituted lactones provided efficient methods for the asymmetric synthesis of optically active chiral diols including chiral 1, 5-diols and 1, 4-diols. The significant progress achieved in recent years in the area of homogeneous catalytic hydrogenation of esters to alcohols is presented in this review. The focus of this review are the development of ligands and catalysts, and the advances in the catalytic asymmetric hydrogenation of esters and lactones.
  • 加载中
    1. [1]

      (a) Calvin, M. J. Am. Chem. Soc. 1939, 61, 2230. (b) Iguchi, M. J. Chem. Soc. Japan 1939, 60, 1287.

    2. [2]

      (a) Young, J. F.; Osborn, J. A.; Jardine, F. H.; Wilkinson, G. J. Chem. Soc., Chem. Commun 1965, 131. (b) Osborn, J. A.; Jardine, F. H.; Young, J. F.; Wilkinson, G. J. Chem. Soc. A 1966, 1711.

    3. [3]

    4. [4]

      (a) Grey, R. A.; Pez, G. P.; Wallo, A.; Corsi, J. J. Chem. Soc., Chem. Commun. 1980, 783. (b) Grey, R. A.; Pez, G. P.; Wallo, A. J. Am. Chem. Soc. 1981, 103, 7536.

    5. [5]

      Matteoli, U.; Menchi, G.; Bianchi, M.; Piacenti, F. J. Mol. Catal. 1988, 44, 347.  doi: 10.1016/0304-5102(88)80020-8

    6. [6]

      Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1997, 667.  doi: 10.1039/a700862g

    7. [7]

      Teunissen, H. T.; Elsevier, C. J. Chem. Commun. 1998, 1367.

    8. [8]

      Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2006, 45, 1113.  doi: 10.1002/(ISSN)1521-3773

    9. [9]

      Balaraman, E.; Gunanathan, C.; Zhang, J.; Shimon, L. J. W.; Milstein, D. Nat. Chem. 2011, 3, 609.  doi: 10.1038/nchem.1089

    10. [10]

      Saudan, L. A.; Saudan, C. M.; Debieux, C.; Wyss, P. Angew. Chem., Int. Ed. 2007, 46, 7473.  doi: 10.1002/(ISSN)1521-3773

    11. [11]

      Kuriyama, W.; Matsumoto, T.; Ogata, O.; Ino, Y.; Aoki, K.; Tanaka, S.; Ishida, K.; Kobayashi, T.; Sayo, N.; Saito, T. Org. Process Res. Dev. 2012, 16, 166.  doi: 10.1021/op200234j

    12. [12]

      Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. V. Chem. Soc. Rev. 2018, 47, 1.  doi: 10.1039/C8CS90001A

    13. [13]

      Li, W.; Xie, J.-H.; Yuan, M.-L.; Zhou, Q.-L. Green Chem. 2014, 16, 4081.  doi: 10.1039/C4GC00835A

    14. [14]

      (a) Pritchard, J.; Filonenko, G. A.; van Putten, R.; Hensen, E. J. M.; Pidko, E. V. Chem. Soc. Rev. 2015, 44, 3808. (b) Werkmeister, S.; Junge, K.; Beller, M. Org. Process Res. Dev. 2014, 18, 289. (c) Dub, P. A.; Ikariya, T. ACS Catal. 2012, 2, 1718. (d) Clarke, M. L. Catal. Sci. Technol. 2012, 2, 2418.

    15. [15]

      Acosta-Ramirez, A.; Bertoli, M.; Gusev, D. G.; Schlaf, M. Green Chem. 2012, 14, 1178.  doi: 10.1039/c2gc15960k

    16. [16]

      Bertoli, M.; Choualeb, A.; Lough, A. J.; Moore, B.; Spasyuk, D.; Gusev, D. G. Organometallics 2011, 30, 3479.  doi: 10.1021/om200437n

    17. [17]

      Ziebart, C.; Jackstell, R.; Beller, M. ChemCatChem 2013, 5, 3288.
       

    18. [18]

      Otsuka, T.; Ishii, A.; Dub, P. A.; Ikariya, T. J. Am. Chem. Soc. 2013, 135, 9600.  doi: 10.1021/ja403852e

    19. [19]

      Zell, T.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. 2014, 53, 4685.  doi: 10.1002/anie.201311221

    20. [20]

      Chakraborty, S.; Dai, H.; Bhattacharya, P.; Fairweather, N. T.; Gibson, M. S.; Krause, J. A.; Guan, H. J. Am. Chem. Soc. 2014, 136, 7869.  doi: 10.1021/ja504034q

    21. [21]

      Werkmeister, S.; Junge, K.; Wendt, B.; Alberico, E.; Jiao, H.; Baumann, W.; Junge, H.; Gallou, F.; Beller, M. Angew. Chem. Int. Ed. 2014, 53, 8722.  doi: 10.1002/anie.201402542

    22. [22]

      Fairweather, N. T.; Gibson, M. S.; Guan, H. Organometallics 2015, 34, 335.  doi: 10.1021/om5011337

    23. [23]

      Elangovan, S.; Wendt, B.; Topf, C.; Bachmann, S.; Scalone, M.; Spannenberg, A.; Jiao, H.; Baumann, W.; Junge, K.; Beller, M. Adv. Catal. Synth. 2016, 358, 820.  doi: 10.1002/adsc.201500930

    24. [24]

      Schneck, F.; Assmann, M.; Balmer, M.; Harms, K.; Langer, R. Organmetallics 2016, 35, 1931.  doi: 10.1021/acs.organomet.6b00251

    25. [25]

      Junge, H.; Wendt, B.; Jiao, H.; Beller, M. ChemCatChem 2014, 6, 2810.  doi: 10.1002/cctc.v6.10

    26. [26]

      Clarke, Z. E.; Maragh, P. T.; Dasgupta, T. P.; Gusev, D. G.; Lough, A. J.; Abdur-Rashid, K. Organometallics 2006, 25, 4113.  doi: 10.1021/om060049z

    27. [27]

      Elangovan, S.; Carbe, M.; Jiao, H.; Spannenberg, A.; Junge, K.; Beller, M. Angew. Chem., Int. Ed. 2016, 55, 15364.  doi: 10.1002/anie.v55.49

    28. [28]

      Elangovan, S.; Topf, C.; Fischer, S.; Jiao, H.; Spannenberg, A.; Baumann, W.; Ludwig, R.; Junge, K.; Beller, M. J. Am. Chem. Soc. 2016, 138, 8809.  doi: 10.1021/jacs.6b03709

    29. [29]

      Srimani, D.; Mukherjee, A.; Goldberg, A. F. G.; Leitus, G.; Diskin-Posner, Y.; Shimon, L. J. W.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2015, 54, 12357.  doi: 10.1002/anie.201502418

    30. [30]

      Korstanje T. J.; van der Vlugt, J. I.; Elsevier, C. J.; de Bruin, B. Science 2015, 350, 298.  doi: 10.1126/science.aaa8938

    31. [31]

      Yuwen, J.; Chakraborty, S.; Brennessel, W. W.; Jones, W. D. ACS Catal. 2017, 7, 3735.  doi: 10.1021/acscatal.7b00623

    32. [32]

      Zhang, G. Q.; Scott, B. L.; Hanson, S. K. Angew. Chem., Int. Ed. 2012, 51, 12102.  doi: 10.1002/anie.201206051

    33. [33]

      Junge, K.; Wendt, B.; Cingolani, A.; Spannenberg, A.; Wei, Z.; Jiao, H.; Beller, M. Chem. Eur. J. 2018, 24, 1046.  doi: 10.1002/chem.201705201

    34. [34]

      Tan, X.; Wang, Q.; Liu, Y.; Wang, F.; Lv, H.; Zhang, X. Chem. Commun. 2015, 51, 12193.  doi: 10.1039/C5CC04242A

    35. [35]

      Ogata, O.; Nakayama, Y.; Nara, H.; Fujiwhara, M.; Kayaki, Y. Org. Lett. 2016, 18, 3894.  doi: 10.1021/acs.orglett.6b01900

    36. [36]

      Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem. Int. Ed. 2012, 51, 2772.  doi: 10.1002/anie.201108956

    37. [37]

      Spasyuk, D.; Gusev, D. G. Organometallics 2012, 31, 5239.  doi: 10.1021/om300670r

    38. [38]

      Spasyuk, D.; Vicent, C.; Gusev, D. G. J. Am. Chem. Soc. 2015, 137, 3743.  doi: 10.1021/ja512389y

    39. [39]

      Gusev, D. G. ACS Catal. 2016, 6, 6967.  doi: 10.1021/acscatal.6b02324

    40. [40]

      Henrion, M.; Roisnel, T.; Couturier, J.-L.; Dubois, J.-L.; Sortais, J.-B.; Darcel, C.; Carpentier, J.-F. Mol. Catal. 2017, 432, 15.  doi: 10.1016/j.mcat.2017.01.025

    41. [41]

      Wang, Z.; Chen, X.; Liu, B.; Liu, Q.-B.; Solan, G. A.; Yang, X.; Sun, W.-H. Catal. Sci. Technol. 2017, 7, 1297.  doi: 10.1039/C6CY02413K

    42. [42]

      Spasyuk, D.; Smith, S.; Gusev, D. G. Angew. Chem., Int. Ed. 2013, 52, 2538.  doi: 10.1002/anie.v52.9

    43. [43]

      McGuinness, D. S.; Wasserscheid, P.; Morgan, D. H.; Dixon, J. T. Organometallics 2005, 24, 552.  doi: 10.1021/om049168+

    44. [44]

      Fogler, E.; Balaraman, E.; Ben-David, Y.; Leitus, G.; Shimon, L. J. W.; Milstein, D. Organometallics 2011, 30, 3826.  doi: 10.1021/om200367j

    45. [45]

      Sun, Y.; Koehler, C.; Tan, R.; Annibale, V. T.; Song, D. Chem. Commun. 2011, 47, 8349.  doi: 10.1039/c1cc12601f

    46. [46]

      Filonenko, G. A.; Cosimi, E.; Lefort, L.; Conley, M. P.; Coperet, C.; Lutz, M.; Hensen, E. J. M.; Pidko, E. A. ACS Catal. 2014, 4, 2667.  doi: 10.1021/cs500720y

    47. [47]

      Filonenko, G. A.; Aguila, M. J. B.; Schulpen, E. N.; van Putten, R.; Wiecko, J.; Mgller, C.; Lefort, L.; Hensen, E. J. M.; Pidko, E. A. J. Am. Chem. Soc. 2015, 137, 7620.  doi: 10.1021/jacs.5b04237

    48. [48]

      (a) Edworthy, I. S.; Blake, A. J.; Wilson, C.; Arnold, P. L. Organometallics 2007, 26, 3684. (b) Edworthy, I. S.; Rodden, M.; Mungur, S. A.; Davis, K. M.; Blake, A. J.; Wilson, C.; Schroöder, M.; Arnold, P. L. J. Organomet. Chem. 2005, 690, 5710. (c) Douthwaite, R. E.; Houghton, J.; Kariuki, B. M. Chem. Commun. 2004, 6, 698.

    49. [49]

      Dub, P. A.; Scott, B. L.; Gordon, J. C. Organometallics 2015, 34, 4464.  doi: 10.1021/acs.organomet.5b00432

    50. [50]

      Stadler, B. M.; Puylaert, P.; Diekamp, J.; van Heck, R.; Fan, Y.; Spannenberg, A.; Hinze, S.; de Vries, J. G. Adv. Synth. Catal. 2018, 360, 1151.  doi: 10.1002/adsc.v360.6

    51. [51]

      Schörgenhumer, J.; Zimmermann, A.; Waser, M. Org. Process Res. Dev. 2018, 22, 862.  doi: 10.1021/acs.oprd.8b00142

    52. [52]

      Zhang, J.; Balaraman, E.; Leitus, G.; Milstein, D. Organometallics 2011, 30, 5716.  doi: 10.1021/om200595m

    53. [53]

      Fogler, E.; Garg, J. A.; Hu, P.; Leitus, G.; Shimon, L. J. W.; Milstein, D. Chem. Eur. J. 2014, 20, 15727.  doi: 10.1002/chem.v20.48

    54. [54]

      Espinosa-Jalapa, N. A.; Nerush, A.; Shimon, L. J. W.; Leitus, G.; Avram, L.; Ben-David, Y.; Milstein, D. Chem. Eur. J. 2017, 23, 5934.  doi: 10.1002/chem.201604991

    55. [55]

      Balaraman, E.; Fogler, E.; Milstein, D. Chem. Commun. 2012, 48, 1111.  doi: 10.1039/C1CC15778G

    56. [56]

      Chen, T.; Li, H.; Qu, S.; Zheng, B.; He, L.; Lai, Z.; Wang, Z.-X.; Huang, K.-W. Organometallics 2014, 33, 4152.  doi: 10.1021/om500549t

    57. [57]

      He, L.-P.; Chen, T.; Gong, D.; Lai, Z.; Huang, K.-W. Organometallics 2012, 31, 5208.  doi: 10.1021/om300422v

    58. [58]

      Kim, D.; Le, L.; Drance, M. J.; Jensen, K. H.; Bogdanovski, K.; Cervarich, T. N.; Barnard, M. G.; Pudalov, N. J.; Knapp, S. M. M.; Chianese, A. R. Organometallics 2016, 35, 982.  doi: 10.1021/acs.organomet.6b00009

    59. [59]

      Le, L.; Liu, J-C.; He, T-Y.; Kim, D.; Lindley, E. J.; Cervarich, T. N.; Malek, J. C.; Pham, J.; Buck, M. R.; Chianese, A. R. Organometallics 2018, 37, 3286.  doi: 10.1021/acs.organomet.8b00470

    60. [60]

      Sluijter, S. N.; Korstanje T. J.; van der Vlugt, J. I.; Elsevier, C. J. J. Organomet. Chem. 2017, 845, 30.  doi: 10.1016/j.jorganchem.2017.01.003

    61. [61]

      Carpenter, I.; Eckelmann, S. C.; Kuntz, M. T.; Fuentes, J. A.; France, M. B.; Clarke, M. L. Dalton Trans. 2012, 41, 10136.  doi: 10.1039/c2dt30973d

    62. [62]

      Fuentes, J. A.; Smith, S. M.; Scharbert, T.; Carpenter, T.; Cordes, D. B.; Slawin, A. M. Z.; Clarke, M. L. Chem. Eur J. 2015, 21, 10851.  doi: 10.1002/chem.v21.30

    63. [63]

      Widegren, M. B.; Harkness, G. J.; Slawin, A. M. Z.; Cordes, D. B.; Clarke, M. L. Angew. Chem., Int. Ed. 2017, 56, 5825.  doi: 10.1002/anie.201702406

    64. [64]

      Nie, H.; Zhou, G.; Wang, Q.; Chen, W.; Zhang, S. Tetrahedron:Asymmetry 2013, 24, 1567.  doi: 10.1016/j.tetasy.2013.10.012

    65. [65]

      Widegren, M. B.; Clarke, M. L. Org. Lett. 2018, 20, 2654.  doi: 10.1021/acs.orglett.8b00864

    66. [66]

      vom Stein, T.; Meuresch, M.; Limper, D.; Schmitz, M.; Hölscher, M.; Coetzee, J.; Cole-Hamilton, D. J.; Klankermayer, J.; Leitner, W. J. Am. Chem. Soc. 2014, 136, 13217.  doi: 10.1021/ja506023f

    67. [67]

      Tan, X.; Wang, Y.; Liu, Y.; Wang, F.; Shi, L.; Lee, K.-H.; Lin, Z.; Lv, H.; Zhang, X. Org. Lett. 2015, 17, 454.  doi: 10.1021/ol503456j

    68. [68]

      Wang, F.; Tan, X.; Lv, H.; Zhang, X. Chem. Asian J. 2016, 11, 2103.  doi: 10.1002/asia.v11.15

    69. [69]

      Anaby, A.; Schelwies, M.; Schwaben, J.; Rominger, F.; Hashmi, A. S. K.; Schaub, T. Organometallics 2018, 37, 2193.  doi: 10.1021/acs.organomet.8b00353

    70. [70]

      (a) Xie, J.-H.; Bao, D.-H.; Zhou, Q.-L. Synthesis 2015, 47, 460. (b) Zhao, B.; Han, Z.; Ding, K. Angew. Chem. Int. Ed. 2013, 52, 4744.

    71. [71]

      O, W. W. N.; Lough, A. J.; Morris, R. H. Chem. Commun. 2010, 46, 8240.  doi: 10.1039/c0cc02664f

    72. [72]

      O, W. W. N.; Morris, R. H. ACS Catal. 2013, 3, 32.  doi: 10.1021/cs300619q

    73. [73]

      Jansen, E.; Jongboed, L. S.; Tromp, D. S.; Lutz, M.; de Bruin, B.; Elsevier, C. J. ChemSusChem 2013, 6, 1737.  doi: 10.1002/cssc.201300363

    74. [74]

      Ito, M.; Ootsuka, T.; Watari, R.; Shiibashi, A.; Himizu, A.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 4240.  doi: 10.1021/ja1117254

    75. [75]

      Touge, T.; Hakamata, T.; Nara, H.; Kobayashi, T.; Sayo, N.; Saito, T.; Kayaki, Y.; Ikariya, T. J. Am. Chem. Soc. 2011, 133, 14960.  doi: 10.1021/ja207283t

    76. [76]

      Junge, K.; Wendt, B.; Westerhaus, F. A.; Spannenberg, A.; Jiao, H.; Beller, M. Chem. Eur. J. 2012, 18, 9011.  doi: 10.1002/chem.v18.29

    77. [77]

      Westerhaus, F. A.; Wendt, B.; Dumrath, A.; Wienhöfer, G.; Junge, K.; Beller, M. ChemSusChem 2013, 6, 1001.  doi: 10.1002/cssc.v6.6

    78. [78]

      Brewster, T. P.; Rezayee, N. M.; Culakova, Z.; Sanford M. S.; Goldberg, K. I. ACS Catal. 2016, 6, 3113.  doi: 10.1021/acscatal.6b00263

    79. [79]

      Gajewski, P.; Gonzalez-de-Castro, A.; M.; Renom-Carrasco, M.; Piarulli, U.; Gennari, C.; de Vries, J. G.; Lefort, L.; Pignataro, L. ChemCatChem 2016, 8, 3431.  doi: 10.1002/cctc.201600972

    80. [80]

      van Putten, R.; Uslamin, E. A.; Garbe, M.; Liu, C.; Gonza-lez-de-Castro, A.; Lutz, M.; Junge, K.; Hensen, E. J. M.; Beller, M.; Lefort, L.; Pidko, E. A. Angew. Chem., Int. Ed. 2017, 56, 7531.  doi: 10.1002/anie.201701365

    81. [81]

      Liu, C.; Xie, J.-H.; Li, Y.-L.; Chen, J.-Q.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2013, 52, 593.  doi: 10.1002/anie.201207561

    82. [82]

      Yang, X.-H.; Xie, J.-H.; Liu, W.-P.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2013, 52, 7833.  doi: 10.1002/anie.v52.30

    83. [83]

      Arai, N.; Namba, T.; Kawaguchi, K.; Masumoto, Y.; Ohkuma, T. Angew. Chem. Int. Ed. 2018, 57, 1386.  doi: 10.1002/anie.201711363

    84. [84]

      Yang, X.-H.; Wang, K.; Zhu, S.-F.; Xie, J.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2014, 136, 17426.  doi: 10.1021/ja510990v

    85. [85]

      Yang, X.-H.; Yue, H.-T.; Yu, N.; Li, Y.-P.; Xie, J.-H.; Zhou, Q.-L. Chem. Sci. 2017, 8, 1811.  doi: 10.1039/C6SC04609F

    86. [86]

      Chen, G.-Q.; Lin, B.-J.; Huang, J.-M.; Zhao, L.-Y.; Chen, Q.-S.; Jia, S.-P.; Yin, Q.; Zhang, X. J. Am. Chem. Soc. 2018, 140, 8064.  doi: 10.1021/jacs.8b03642

  • 加载中
    1. [1]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    2. [2]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    3. [3]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    4. [4]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    5. [5]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    8. [8]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    9. [9]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    10. [10]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    11. [11]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    12. [12]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    13. [13]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    14. [14]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    15. [15]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    16. [16]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    20. [20]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

Metrics
  • PDF Downloads(27)
  • Abstract views(2311)
  • HTML views(632)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return