Citation: Yang Junhang, Fu Xiaobo, Lu Zenghui, Zhu Gangguo. Visible-Light Photocatalytic Remote Thiolation of Aldehydes Triggered by Sulfonylation of Alkenes With Thiosulfonates[J]. Acta Chimica Sinica, ;2019, 77(9): 901-905. doi: 10.6023/A19050161 shu

Visible-Light Photocatalytic Remote Thiolation of Aldehydes Triggered by Sulfonylation of Alkenes With Thiosulfonates

  • Corresponding author: Zhu Gangguo, gangguo@zjnu.cn
  • Received Date: 2 May 2019
    Available Online: 12 September 2019

    Fund Project: the National Natural Science Foundation of China 21672191Project supported by the National Natural Science Foundation of China (No. 21672191)

Figures(4)

  • Due to the prevalence of organosulfur compounds in pharmaceuticals, agrochemicals, and functional materials, the development of new efficient and practical methods for the construction of C-S bonds is highly desirable in organic synthesis. Recently, the radical sulfonylation of alkenes has attracted considerable attention because of its efficient and versatile synthesis of organosulfur compounds under mild reaction conditions. The previous methods usually involve the formation of one C-S bond. In contrast, the thiosulfonylation of alkenes represents a highly attractive protocol for the concurrent formation of two distinct C-S bonds. Herein, a novel visible-light photocatalytic remote thiolation of aldehydes triggered by the radical sulfonylation of unactivated alkenes has been developed, with readily available thiosulfonates as both the sulfonating and thiolating reagents, successfully giving 6-or 7-sulfonylated thioesters in moderate to high yields with broad substrate scope and excellent atom-economics. As compared to the traditional methods that are limited to 1, 2-or 1, 1-thiosulfonylation of alkenes, the reaction described here constitutes the first example of 1, 6-or 1, 7-thiosulfonylation of functionalized alkenes, thus offering a good complementary protocol to the existing methods. Preliminary mechanistic studies suggest a radical pathway consisting of the formation of sulfonyl radical, alkene sulfonylation, intramolecular 1, n-hydrogen atom transfer (1, n-HAT), and thiolation of acyl radical. A representative procedure for the visible-light induced remote thiolation of aldehydes initiated by the sulfonylation of alkenes with thiosulfonates is as following:To a mixture of thiosulfonates 2 (0.5 mmol), Ir(ppy)3 (1 mol%), and K2HPO4 (0.5 mmol) in 4 mL of MeCN was added alkenyl aldehydes 1 (0.25 mmol) under a N2 atmosphere. After 18 h of irradiation with 15 W blue LEDs at 25℃, the reaction mixture was quenched with water, extracted with EtOAc, dried over anhydrous Na2SO4, concentrated, and purified by column chromatography with silica gel (EtOAc/petroleum ethers=1:5) to give products 3 or 4.
  • 加载中
    1. [1]

      Madasu, S. B.; Vekariya, N. A.; Kiran, M. N. V. D. H.; Gupta, B.; Islam, A.; Douglas, P. S.; Babu, K. R. Beilstein J. Org. Chem. 2012, 8, 1400.  doi: 10.3762/bjoc.8.162

    2. [2]

      Fromtling, R. A. Drugs Future 1989, 14, 1165.  doi: 10.1358/dof.1989.014.12.109647

    3. [3]

      Calverley, P. M. A.; Anderson, J. A.; Celli, B.; Ferguson, G. T.; Jenkins, C.; Jones, P. W.; Yates, J. C.; Vestbo, J. N. Engl. J. Med. 2007, 356, 775.  doi: 10.1056/NEJMoa063070

    4. [4]

    5. [5]

      Julia, M.; Paris, J. M. Tetrahedron Lett. 1973, 14, 4833.  doi: 10.1016/S0040-4039(01)87348-2

    6. [6]

      Olah, G. A.; Mathew, T.; Prakash, G. K. S. Chem. Commun. 2001, 1696.
       

    7. [7]

      (a) Deeming, A. S.; Russell, C. J.; Hennessy, A. J.; Willis, M. C. Org. Lett. 2014, 16, 150. (b) Wan, Y.; Zhang, J.; Chen, Y.; Kong, L.; Luo, F.; Zhu, G. Org. Biomol. Chem. 2017, 15, 7204.

    8. [8]

      (a) Zhou, Q.; Gui, J.; Pan, C.-M.; Albone, E.; Cheng, X.; Suh, E. M.; Grasso, L.; Ishihara, Y.; Baran, P. S. J. Am. Chem. Soc. 2013, 135, 12994. (b) Miao, W.; Zhao, Y.; Ni, C.; Gao, B.; Zhang, W.; Hu, J. J. Am. Chem. Soc. 2018, 140, 880. (c) Griffiths, R. J.; Kong, W. C.; Richards, S. A.; Burley, G. A.; Willis, M. C.; Talbot, E. P. A. Chem. Sci. 2018, 9, 2295.

    9. [9]

    10. [10]

      (a) Liu, T.; Li, Y.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Org. Lett. 2018, 20, 3605. (b) Ye, S.; Zheng, D.; Wu, J.; Qiu, G. Chem. Commun. 2019, 55, 2214.

    11. [11]

      (a) Meyer, A. U.; J ger, S.; Hari, D. P.; K nig, B. Adv. Synth. Catal. 2015, 357, 2050. (b) Zhang, G.; Zhang, L.; Yi, H. Luo, Y.; Qi, X.; Tung, C.-H.; Wu, L.-Z.; Lei, A. Chem. Commun. 2016, 52, 10407. (c) Ratushnyy, M.; Kamenova, M.; Gevorgyan, V. Chem. Sci. 2018, 9, 7193. (d) Sun, D.; Zhang, R. Org. Chem. Front. 2018, 5, 92. (e) Cai, S.; Xu, Y.; Chen, D.; Li, L.; Chen, Q.; Huang, M.; Weng, W. Org. Lett. 2016, 18, 2990.

    12. [12]

      (a) Quebatte, L.; Thommes, K.; Severin, K. J. Am. Chem. Soc. 2006, 128, 7440. (b) Hossain, A.; Engl, S.; Lutsker, E.; Reiser, O. ACS Catal. 2019, 9, 1103. (c) Taniguchi, T.; Idota, A.; Ishibashi, H. Org. Biomol. Chem. 2011, 9, 3151. (d) Pagire, S. K.; Paria, S.; Reiser, O. Org. Lett. 2016, 18, 2106. (e) Xiong, Y.; Sun, Y.; Zhang, G. Org. Lett. 2018, 20, 6250. (f) Rao, W.-H.; Jiang, L.-L.; Liu, X.-M.; Chen, M.-J.; Chen, F.-Y.; Jiang, X.; Zhao, J.-X.; Zou, G.-D.; Zhou, Y.-Q.; Tang, L. Org. Lett. 2019, 21, 2890. (g) Wang, H.; Wang, G.; Lu, Q.; Chiang, C.-W.; Peng, P.; Zhou, J.; Lei, A. Chem. Eur. J. 2016, 22, 14489. (h) Yuan, Y.; Cao, Y.; Lin, Y.; Li, Y.; Huang, Z.; Lei, A. ACS Catal. 2018, 8, 10871.

    13. [13]

      (a) Gao, Y.; Mei, H.; Han, J.; Pan, Y. Chem. Eur. J. 2018, 24, 17205. (b) Sun, J.; Li, P.; Guo, L.; Yu, F.; He, Y.-P.; Chu, L. Chem. Commun. 2018, 54, 3162. (c) Pirenne, V.; Kurtay, G.; Voci, S.; Bouffier, L.; Sojic, N.; Robert, F.; Bassani, D. M.; Landais, Y. Org. Lett. 2018, 20, 4521.

    14. [14]

      (a) Chen, Z.-Z.; Liu, S.; Hao, W.-J.; Xu, G.; Wu, S.; Miao, J.-N.; Jiang, B.; Wang, S.-L.; Tu, S.-J.; Li, G. Chem. Sci. 2015, 6, 6654. (b) Huang, M.-H.; Zhu, C.-F.; He, C.-L.; Zhu, Y.-L.; Hao, W.-J.; Wang, D.-C.; Tu, S.-J.; Jiang, B. Org. Chem. Front. 2018, 5, 1643. (c) Wu, W.; Yi, S.; Yu, Y.; Huang, W.; Jiang, H. J. Org. Chem. 2017, 82, 1224. (d) Cao, X.; Cheng, X.; Xuan, J. Org. Lett. 2018, 20, 449.

    15. [15]

      (a) Zhu, D.; Shao, X.; Hong, X.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2016, 55, 15807. (b) Zhao, Q.; Lu, L.; Shen, Q. Angew. Chem., Int. Ed. 2017, 56, 11575.

    16. [16]

      (a) Li, H.; Shan, C.; Tung, C.-H.; Xu, Z. Chem. Sci. 2017, 8, 2610. (b) Huang, S.; Thirupathi, N.; Tung, C.-H.; Xu, Z. J. Org. Chem. 2018, 83, 9449.

    17. [17]

      He, F.-S.; Wu, Y.; Zhang, J.; Xia, H.; Wu, J. Org. Chem. Front. 2018, 5, 2940.  doi: 10.1039/C8QO00824H

    18. [18]

      (a) Cheng, C.; Liu, S.; Lu, D.; Zhu, G. Org. Lett. 2016, 18, 2852. (b) Nie, X.; Cheng, C.; Zhu, G. Angew. Chem., Int. Ed. 2017, 56, 1898. (c) Jin, W.; Zhou, Y.; Zhao, Y.; Ma, Q.; Kong, L.; Zhu, G. Org. Lett. 2018, 20, 1435. (d) Wan, Y.; Shang, T.; Lu, Z. Zhu, G. Org. Lett. 2019, 21, 4187.

    19. [19]

      For selected reviews on photocatalysis, see: (a) Narayanam, J. M. R.; Stephenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102. (b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828. (c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (d) Xi, Y.; Yi, H.; Lei, A. Org. Biomol. Chem. 2013, 11, 2387. (e) Yu, S.; Zhang, Y.; Wang, R.; Jiang, H.; Cheng, Y.; Kadi, A.; Fun, H.-K. Synthesis 2014, 2711. (f) Xie, J.; Jin, H.; Xu, P.; Zhu, C. Tetrahedron Lett. 2014, 55, 36. (g) Wang, C.; Lu, Z. Org. Chem. Front. 2015, 2, 179. (h) Matsui, J. K.; Lang, S. B.; Heitz, D. R.; Molander, G. A. ACS Catal. 2017, 7, 2563.

    20. [20]

      For selected reviews, see: (a) Hu, X.-Q.; Chen, J.-R.; Xiao, W.-J. Angew. Chem., Int. Ed. 2017, 56, 1960. (b) Li, W.; Xu, W.; Xie, J.; Yu, S.; Zhu, C. Chem. Soc. Rev. 2018, 47, 654. (c) Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569. (d) Nechab, M.; Mondal, S.; Bertrand, M. P. Chem. Eur. J. 2014, 20, 16034. For selected reports involving 1, n-HAT since 2018, see: (e) Short, M. A.; Blackburn, J. M.; Roizen, J. L. Angew. Chem., Int. Ed. 2018, 57, 296. (f) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D. Angew. Chem., Int. Ed. 2018, 57, 744. (g) Wu, X.; Wang, M.; Huan, L.; Wang, D.; Wang, J.; Zhu, C. Angew. Chem., Int. Ed. 2018, 57, 1640. (h) Wu, S.; Wu, X.; Wang, D.; Zhu, C. Angew. Chem., Int. Ed. 2019, 58, 1499. (i) Jiang, H.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 1692. (j) Xia, Y.; Wang, L.; Studer, A. Angew. Chem., Int. Ed. 2018, 57, 12940. (k) Ratushnyy, M.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2018, 57, 2712. (l) Chuentragool, P.; Yadagiri, D.; Morita, T.; Sarkar, S.; Parasram, M.; Wang, Y.; Gevorgyan, V. Angew. Chem., Int. Ed. 2019, 58, 1794. (m) Na, C. G.; Alexanian, E. J. Angew. Chem., Int. Ed. 2018, 57, 13106. (n) Li, Z.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2018, 57, 13288. (o) Bao, X.; Wang, Q.; Zhu, J. Angew. Chem., Int. Ed. 2019, 58, 2139. (p) Kim, I.; Park, B.; Kang, G.; Kim, J.; Jung, H.; Lee, H.; Baik, M.-H.; Hong, S. Angew. Chem., Int. Ed. 2018, 57, 15517. (q) Guan, H.; Sun, S.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.; Liu, L. Angew. Chem., Int. Ed. 2018, 57, 11413. (r) Hu, A.; Guo, J.-J.; Pan, H.; Tang, H.; Gao, Z.; Zuo, Z. J. Am. Chem. Soc. 2018, 140, 1612. (s) An, X.-D.; Jiao, Y.-Y.; Zhang, H.; Gao, Y.; Yu, S. Org. Lett. 2018, 20, 401. (t) Zhu, Y.; Huang, K.; Pan, J.; Qiu, X.; Luo, X.; Qin, Q.; Wei, J.; Wen, X.; Zhang, L.; Jiao, N. Nat. Commun. 2018, 9, 2625. (u) Li, G.-X.; Hu, X.; He, G.; Chen, G. Chem. Sci. 2019, 10, 688. (v) Zhang, Z.; Stateman, L. M.; Nagib, D. A. Chem. Sci. 2019, 10, 1207. (w) Wu, K.; Wang, L.; Colón-Rodríguez, S.; Flechsig, G.-U.; Wang, T. Angew. Chem., Int. Ed. 2019, 58, 1774. (x) Liu, Z.; Xiao, H.; Zhang, B.; Shen, H.; Zhu, L.; Li, C. Angew. Chem., Int. Ed. 2019, 58, 2510.

  • 加载中
    1. [1]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    2. [2]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    9. [9]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    14. [14]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    20. [20]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

Metrics
  • PDF Downloads(9)
  • Abstract views(1221)
  • HTML views(218)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return