Citation: Ni Yuxin, Zhang Chenjie, Yuan Yaxian, Xu Minmin, Yao Jianlin. Determination on Origination of Surface Enhanced Raman Scattering Effect on Nano ZnO Substrate[J]. Acta Chimica Sinica, ;2019, 77(7): 641-646. doi: 10.6023/A19040156 shu

Determination on Origination of Surface Enhanced Raman Scattering Effect on Nano ZnO Substrate

  • Corresponding author: Yuan Yaxian, yuanyaxian@suda.edu.cn Yao Jianlin, jlyao@suda.edu.cn
  • Received Date: 30 April 2019
    Available Online: 20 July 2019

    Fund Project: the National Natural Science Foundation of China 21773166Project supported by the National Natural Science Foundation of China (Nos. 21773166, 21673152)the National Natural Science Foundation of China 21673152

Figures(4)

  • The promising application of surface-enhanced Raman spectroscopy (SERS) was definitely based on the high quality substrates which were restricted to the rough noble metals and colloidal nanoparticle materials. However, semiconductor has become a potential substrate for the SERS investigation due to its high stability and reproducibility. It remains significant challenges in interpreting the enhancement mechanisms. Herein, broom-like ZnO nanoparticles with novel morphology and uniform size was prepared by pyrolysis of (CH3COO)2Zn. By using p-nitrophenylthiophenol (PNTP), phenylthiophenol (TP) and p-aminophenylthiophenol (PATP) as probe molecules, the SERS effect on ZnO surfaces was systematically studied under the irradiation of excitation lines with the wavelength of 532 nm and 638 nm. The different substituents in p-position of TP allowed to change the energy levels by the electron withdrawing or donating group, it was beneficial to match the energy level gap between the probe molecules and semiconductor for triggering the photon driven charge transfer. The surface enhancement factor (EF) of broom-like ZnO nanoparticles were estimated accordingly, and the contribution of non-resonance and charge transfer to SERS effect was distinguished. The results demonstrated that the surface enhancement factor was about 10 to 35 times depending on the probe molecules and excitation wavelengths. Therefore, the different enhancement origination contributed to the different molecules on the ZnO substrate. For the TP and PATP, the charge transfer from the HOMO level of molecule to CB of ZnO was achieved by the assistance of the laser photon with the appropriate energy. Moreover, the higher energy of the photon is, the stronger the SERS enhancement effect. As for the PNTP, the photon driven charge transfer was absent due to the significant change of the HOMO and LUMO level caused by the electron withdrawing group of NO2. It revealed that the enhancement effect of PNTP molecule about 10 times was contributed by the non-resonance enhancement mechanism which was mainly due to the changes in the polarizability caused by the chemical adsorption. Comparing to the noble metal surface, the enhancement of charge transfer on ZnO was decreased with 1~2 orders of magnitude. The relatively lower rate of charge transfer in semiconductor resulted in the decrease of the charge transfer enhancement. The preliminary studies provided a novel approach for the preparation and regulation of new semiconductor SERS substrates.
  • 加载中
    1. [1]

      Halas, N. J.; Moskovits, M. MRS Bull. 2013, 38, 607.  doi: 10.1557/mrs.2013.156

    2. [2]

      Wang, M.; Yan, X.; Wei, D.; Liang, L.; Wang, Y. Acta Chim. Sinica 2019, 77, 184.
       

    3. [3]

      Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.

    4. [4]

      Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; van Duyne, R. R. Annu. Rev. Anal. Chem. 2008, 1, 601.  doi: 10.1146/annurev.anchem.1.031207.112814

    5. [5]

      Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Chem. Rev. 2011, 111, 3913.  doi: 10.1021/cr200061k

    6. [6]

      Wu, D. Y.; Liu, X. M.; Duan, S.; Xu, X.; Ren, B.; Lin, S. H.; Tian, Z. Q. J. Phys. Chem. C 2008, 112, 4195.  doi: 10.1021/jp0760962

    7. [7]

      Tian, Z. Q.; Ren, B.; Wu, D. Y. J. Phys. Chem. B 2002, 106, 9463.  doi: 10.1021/jp025970i

    8. [8]

      Zhao, L. L.; Jensen, L.; Schatz, G. C. J. Am. Chem. Soc. 2006, 128, 2911.  doi: 10.1021/ja0556326

    9. [9]

      Tian, Z. Q.; Ren, B. Annu. Rev. Phys. Chem. 2004, 55, 197.  doi: 10.1146/annurev.physchem.54.011002.103833

    10. [10]

      Wu, D. Y.; Li, J. F.; Ren, B.; Tian, Z. Q. Chem. Soc. Rev. 2008, 37, 1025.  doi: 10.1039/b707872m

    11. [11]

      Wang, Y. F.; Ruan, W. D.; Zhang, J. H.; Yang, B.; Xu, W. Q.; Zhao, B.; Lombardi, J. R. J. Raman Spectrosc. 2009, 40, 1072.  doi: 10.1002/jrs.v40:8

    12. [12]

      Klingshirn, C.; Fallert, J.; Zhou, H.; Sartor, J.; Thiele, C.; Maier Flaig, F.; Schneider, D.; Kalt, H. Phys. Status Solidi B 2010, 247, 1424.  doi: 10.1002/pssb.v247:6

    13. [13]

      Yang, P. D.; Yan, R. X.; Fardy, M. Nano Lett. 2010, 10, 1529.  doi: 10.1021/nl100665r

    14. [14]

      Chu, S.; Wang, G. P.; Zhou, W. H.; Lin, Y. Q.; Chernyak, L.; Zhao, J. Z.; Kong, J. Y.; Li, L.; Ren, J. J.; Liu, J. L. Nat. Nanotechnol. 2011, 6, 506.  doi: 10.1038/nnano.2011.97

    15. [15]

      Zhao, D.; Zhang, X. X.; Dong, H. B.; Yang, L. J.; Zeng, Q. S.; Li, J. Z.; Cai, L.; Zhang, X.; Luan, P. S.; Zhang, Q.; Tu, M.; Wang, S.; Zhou, W. Y.; Xie, S. S. Nanoscale 2013, 5, 4443.  doi: 10.1039/c3nr00049d

    16. [16]

      Dorfman, A.; Kumar, N.; Hahm, J. Langmuir 2006, 22, 4890.  doi: 10.1021/la053270+

    17. [17]

      Wen, H.; He, T. J.; Xu, C. Y.; Zuo, J.; Liu, F. C. Mol. Phys. 1996, 88, 281.  doi: 10.1080/00268979609482416

    18. [18]

      Sun, Z. H.; Zhao, B.; Lombardi, J. R. Appl. Phys. Lett. 2007, 91, 221106.  doi: 10.1063/1.2817529

    19. [19]

      Wang, X. T.; Shi, W. X.; Jin, Z.; Huang, W. F.; Lin, J.; Ma, G. S.; Li, S. Z.; Guo, L. Angew. Chem., Int. Ed. 2017, 56, 9851.  doi: 10.1002/anie.201705187

    20. [20]

      Lin, J.; Shang, Y.; Li, X. X.; Yu, J.; Wang, X. T.; Guo, L. Adv. Mater. 2016, 29, 1.

    21. [21]

      Yang, L. B.; Jiang, X.; Ruan, W. D.; Zhao, B.; Xu, W. Q.; Lombardi, J. R. J. Phys. Chem. C 2008, 112, 20095.  doi: 10.1021/jp8074145

    22. [22]

      Dong, B.; Fang, Y. R.; Xia, L. X.; Xu, H. X.; Sun, M. T. J. Raman Spectrosc. 2011, 42, 1205.  doi: 10.1002/jrs.v42.6

    23. [23]

      Blum, C.; Opilik, L.; Atkin, J. M.; Braun, K.; Käemmer, S. B.; Kravtsov, V.; Kumar, N.; Lemeshko, S.; Li, J. F.; Luszcz, K.; Maleki, T.; Meixner, A. J.; Minne, S.; Raschke, M. B.; Ren, B.; Rogalski, J.; Roy, D.; Stephanidis, B.; Wang, X.; Zhang, D.; Zhong, J. H.; Zenobi, R. J. Raman Spectrosc. 2014, 45, 22.  doi: 10.1002/jrs.v45.1

    24. [24]

      Fang, Y. R.; Li, Y. Z.; Xu, H. X.; Sun, M. T. Langmuir 2010, 26, 7737.  doi: 10.1021/la904479q

    25. [25]

      Guo, Q. H.; Xu, M. M.; Yuan, Y. X.; Gu, R. A.; Yao, J. L. Langmuir 2016, 32, 4530.  doi: 10.1021/acs.langmuir.5b04393

    26. [26]

      Conway, E. B.; Mathieson, J.; Dhar, P. H. J. Phys. Chem. 1974, 78, 1226.  doi: 10.1021/j100605a018

    27. [27]

      Wei, H.; Luo, J. W.; Li, S. S.; Wang, L. W. J. Am. Chem. Soc. 2016, 138, 8165.  doi: 10.1021/jacs.6b03524

    28. [28]

      Tahir, M. N.; Natalio, F.; Cambaz, M. A.; Panthöfer, M.; Branscheid, R.; Kolb, U.; Tremel, W. Nanoscale 2013, 5, 9944.  doi: 10.1039/c3nr02817h

  • 加载中
    1. [1]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    7. [7]

      Peipei Sun Jinyuan Zhang Yanhua Song Zhao Mo Zhigang Chen Hui Xu . 引入内建电场增强光载流子分离以促进H2的生产. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-. doi: 10.3866/PKU.WHXB202311001

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    10. [10]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    11. [11]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    12. [12]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    13. [13]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    14. [14]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    15. [15]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    16. [16]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    17. [17]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    18. [18]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    19. [19]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    20. [20]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

Metrics
  • PDF Downloads(19)
  • Abstract views(1130)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return